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Multidimensional psychometric functions can typically
be estimated nonparametrically for greater accuracy or
parametrically for greater efficiency. By recasting the
estimation problem from regression to classification,
however, powerful machine learning tools can be
leveraged to provide an adjustable balance between
accuracy and efficiency. Contrast sensitivity functions
(CSFs) are behaviorally estimated curves that provide
insight into both peripheral and central visual function.
Because estimation can be impractically long, current
clinical workflows must make compromises such as
limited sampling across spatial frequency or strong
assumptions on CSF shape. This article describes the
development of the machine learning contrast response
function (MLCRF) estimator, which quantifies the
expected probability of success in performing a contrast

detection or discrimination task. A machine learning CSF
can then be derived from the MLCRF. Using simulated
eyes created from canonical CSF curves and actual
human contrast response data, the accuracy and
efficiency of the machine learning contrast sensitivity
function (MLCSF) was evaluated to determine its
potential utility for research and clinical applications.
With stimuli selected randomly, the MLCSF estimator
converged slowly toward ground truth. With optimal
stimulus selection via Bayesian active learning,
convergence was nearly an order of magnitude faster,
requiring only tens of stimuli to achieve reasonable
estimates. Inclusion of an informative prior provided no
consistent advantage to the estimator as configured.
MLCSF achieved efficiencies on par with quickCSF, a
conventional parametric estimator, but with
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systematically higher accuracy. Because MLCSF design
allows accuracy to be traded off against efficiency, it
should be explored further to uncover its full potential.

Introduction

Visual contrast sensitivity reflects both peripheral
and central visual processing ability. As such, it is
useful for diagnosing a variety of visual disorders. The
simplest, easiest, cheapest, and most portable way to
quantify this ability is by querying directly—delivering
appropriate visual stimuli and recording the resulting
behavioral responses. Even with steady advances in
quantifying physiological biomarkers of the retina and
brain (Calderone et al., 2013; Yarmohammadi et al.,
2016), no alternate diagnostic pathway is foreseen that
will completely supplant psychophysical testing for
evaluating visual system function.

As with all psychophysical tests, however, estimating
contrast sensitivity functions (CSFs) requires serial
behavioral data acquisition to estimate latent variables,
leading to impractically long acquisition times because
of high variance in the underlying physiological
processes. Although full CSFs can therefore have
significant clinical value, rapid psychophysical
screenings that sacrifice quantitative precision are often
more desirable for practical reasons.

Methods have been proposed for accelerating
CSF testing while preserving sufficient accuracy for
clinical decision making (Gu et al., 2016; Lesmes,
Lu, Baek, & Albright, 2010; Wang, Wang, Huang,
Zhou, & Tzvetanov, 2016). Because of intrinsic
noisiness, speeding up the estimates typically requires
making assumptions—incompletely justified in most
cases—about some model parameters in order to
reduce the degrees of freedom of the model to be
learned (Treutwein & Strasburger, 1999). This process
results in less flexible models that might work well on
average but fail to capture details of some individual
curves, especially local nuances such as notches (Tahir,
Parry, Pallikaris, & Murray, 2009; Woods, Bradley, &
Atchison, 1996).

For example, a common modern assumption
about the shape of the CSF exploited in some of
the most advanced CSF estimators is that it adheres
to a truncated parabola (Zhao, Lesmes, Hou, & Lu,
2021). Although this shape visually reflects common
CSF trends and has been shown to lead to more
accurate estimates compared to alternate parametric
forms (Watson & Ahumada, 2005), the parameters
of the model do not provide mechanistic insight into
the underlying physiological construct. Reductionist
modeling in this case therefore appears to primarily be
useful for achieving sufficient test accuracy with fewer
data samples, allowing for more rapid tests. Reducing

the resulting model to a small number of parameters
does provide a useful shorthand for researchers and
clinicians to conceptualize and communicate general
CSF shape.

The continued expansion of machine learning
success over the past two decades can be at least
partially attributed to improved ability to constrain
highly flexible models by discerning complex patterns
in data (Basha & Rajput, 2019). Although some of
the most prominent successes involve extremely large
data sets (Zhou, Pan, Wang, & Vasilakos, 2017), similar
advances can also be applied to much smaller data
sets of various types (Kokol, Kokol, & Zagoranski,
2021). If more flexible CSF models can be trained in
reasonable amounts of time, then more appropriate
estimates can be achieved for unusual phenotypes not
fit well by a traditional, assumption-laden functional
form.

Exactly this capability has been achieved with the
threshold audiogram, an auditory analog of the CSF
(Cox & de Vries, 2021; Schlittenlacher, Turner, &
Moore, 2018; Song et al., 2015), as well as threshold
perimetry tests (Chesley & Barbour, 2020). The current
study summarizes the application of similar principles
to construct a CSF estimator, along with a preliminary
assessment of estimator performance. The result is
a highly flexible nonparametric estimator that has
the potential to capture a wide variety of individual
CSF curves in practical amounts of time. Perhaps
most importantly, this single estimator can be tuned
toward either efficiency or accuracy, depending on the
application or testing time available.

Modeling framework

Background

The contrast sensitivity function is defined as
the performance threshold of a behavioral task in
response to manipulations of the spatial frequency
and visual contrast of a visual stimulus (Ginsburg,
2003). Other stimulus parameters such as mean
luminance, size and visual eccentricity are typically
held constant or manipulated in stepwise fashion,
resulting in a series of CSF curves in the latter case
(Kolb, Fernandez, & Nelson, 1995). The CSF curve
reflects a particular success probability contour on the
underlying multidimensional psychometric function,
or psychometric field. When considering only a single
spatial frequency, signal detection theory predicts that
the ability to detect the presence of a visual pattern
is a monotonically increasing function of contrast
(Green & Swets, 1966; Kingdom & Prins, 2010). The
resulting one-dimensional psychometric function ψ(κ)
is modeled as a sigmoid in contrast κ.
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Because the entire psychometric function is rarely
of interest in clinical applications, adaptive staircase
methods have long been adopted to estimate only
the threshold of this sigmoid (King-Smith, 1984;
Levitt, 1971; Treutwein, 1995). Such methods exploit
assumptions made about the spread (or equivalently,
slope) of the sigmoid in order to set appropriate step
sizes that probe either side of the threshold. While
fast, these nonparametric methods are inherently
unscalable to higher dimensions (i.e., adding additional
independent variables that affect the psychometric field)
because they offer no efficiency gain with increasing
dimensionality. In other words, they have little capacity
to incorporate knowledge gained at one combination of
independent variables to improve the threshold estimate
at another combination. The result is a highly flexible
but relatively inefficient CSF estimation method. Such
methods have, however, been shown to exhibit superior
estimation accuracy relative to parametric methods
(Watson & Ahumada, 2005).

Incorporating the psychometric spread into a
psychometric curve estimator as a free parameter is
possible (Leek, 2001), though this typically requires
about an order of magnitude more data than when
estimating threshold alone (Kingdom & Prins, 2010;
King-Smith & Rose, 1997; Kontsevich & Tyler, 1999).
These methods are scalable to multiple dimensions
(DiMattina, 2015; Lesmes, Jeon, Lu, & Dosher,
2006), but the gains to efficiency by sharing inference
across all the input variables is generally negated by
the additional data requirements to estimate the full
function. Therefore, estimating a full psychometric
field of contrast responses by combining a parametric
estimate of psychometric spread with a low-order
parameterization across spatial frequency would result
in a relatively inflexible estimator suffering from poor
accuracy and efficiency relative to alternatives. Likely
for these reasons, no estimator of this type is known to
have been developed for CSF estimation.

Because the CSF is a threshold curve, parameterizing
it directly and making appropriate assumptions
about psychometric spread represents a reasonable
compromise to gain sufficient accuracy and practical
efficiency. Indeed, multiple parametric forms of the
CSF have been evaluated for accuracy and efficiency
(Rohaly & Owsley, 1993; Watson & Ahumada, 2005). A
balance between model complexity and ability to map
individual CSFs, along with some interpretability of
model parameters, provides the truncated parabola with
an advantage over other model forms. These advantages
were exploited to develop the time-efficient quickCSF
method (Lesmes et al., 2010), as well as modern
extensions with even more desirable characteristics
(Zhao et al., 2021).

A practical and effective modern computational
CSF estimation therefore exists that appears to
balance efficiency and flexibility, but there may still

be room for improvement. For example, although
demonstrably better than other models, the truncated
parabola is unable to adequately capture the natural
detail of some individual CSFs (Chung & Legge,
2016; Rohaly & Owsley, 1993). Furthermore, despite
the interpretability of the truncated parabola
parameters regarding the shape of the CSF curve itself,
relationships to underlying physiological variables
have yet to be established, compromising any potential
mechanistic interpretation of the resulting CSF
models.

Nonparametric estimators historically exhibit
great flexibility but poor efficiency, as described
above. The machine learning field, however, has
expended enormous efforts over the past 2 decades
developing highly flexible estimators for a wide variety
of applications. Exploiting such advances may pay
dividends for CSF estimation. Indeed, by recasting the
psychometric field estimation problem from one of
multiple regression to one of probabilistic classification,
new machine learning tools can be brought to bear on
this longstanding problem. These methods exhibit little
apparent advantage for one-dimensional psychometric
function estimation, but considerable advantages
for multidimensional estimation (Song, Garnett, &
Barbour, 2017), particularly when accompanied by
optimal task item selection in the form of Bayesian
active learning (Song, Sukesan, & Ba, 2018).

This study involves developing a probabilistic
machine learning classifier for estimating a fully
predictive contrast response function (CRF), then
extracting a CSF estimate from the resulting model.
Canonical and real CSF curves are used to create
generative models, which then provide simulated
behavioral responses representing ground truth values.
The ability of the new estimator to fit these known
functions is evaluated for different stimulus presentation
sequences and bias conditions. The performance of
the algorithm is evaluated in terms of accuracy and
efficiency and compared against quickCSF performance
on the same simulated eyes.

Gaussian process classification

A full development of the following can be found
in (Song et al., 2017). Briefly, define f(x) to be a latent
function defined on a continuous multidimensional
space x ∈ X . For the current application, x represents
an ordered pair (ω, κ) indexing a visual grating
at a particular spatial frequency and contrast. The
latent function itself represents the probability of
correctly detecting this grating. A Gaussian process
(GP) represents a convenient means to encode prior
knowledge about the latent function:

p ( f ) = GP
(
μ (x) , K

(
x, x′)) . (1)

Downloaded from abstracts.iovs.org on 04/27/2024



Journal of Vision (2024) 24(1):6, 1–18 Marticorena et al. 4

In other words, a GP provides probabilistic
constraints on what form the latent function can take.
The knowledge represented by the GP can be updated
following new data collection according to Bayesian
principles. We evaluate the GP over a finite sample
of independent values X = {x1, x2,..., xn}. In binary
classification tasks the dependent variable can take on
one of two values indicating failure or success: yi ∈ {0,
1}. The probability of success p(y = 1|f) is modeled
by a sigmoidal link function ψ(x). This function is
distributed according to a Bernoulli likelihood:

ψ (x) ∼ p(y = 1| f , x) = Bernoulli (ψ ( f (x))) . (2)

The general sigmoidal link function is given by

ψ (x; θ, σ, γ , λ) = γ + (1 − γ − λ)φ (x; θ, σ ) , (3)

where φ( · ) is the normal cumulative distribution
function (CDF) parameterized by threshold (i.e., mean)
θ and spread (i.e., standard deviation) σ . Remaining
parameters include the guess rate γ , and the lapse
rate λ (Wichmann & Hill, 2001). The threshold as a
function of spatial frequency θ (ω) becomes the CSF.
The guess rate for a two-alternative forced-choice task,
for example, would be set to 0.5 and for a detection
task might be set to 0. The current study simulated
only detection tasks and fixed λ = γ = 0.04 to allow
for a small proportion of lucky guesses and lapses
of attention. Incorporating any reasonable response
error rate value into a detection task estimator tends to
improve estimation accuracy relative to an error rate of
0 when errors actually do occur. However, the impact
of the precise value selected was not investigated in
the current study. Individualized threshold and spread
functions θ (ω) and σ (ω) were learned by the algorithm
for each person.

The resulting machine learning contrast response
function (MLCRF) estimator implements a
multidimensional nonparametric probabilistic classifier
subdividing the input domain of the psychometric
field into subdomains of “task success” and “task
failure.” Reframing the modeling problem in terms of
classification allows algorithmic advances in machine
learning classification to be exploited. The CSF
reflects a single fixed-probability contour on the full
MLCRF, giving rise to the machine learning contrast
sensitivity function (MLCSF) as our functional estimate
comparable to other CSF estimation algorithm outputs.

Bayesian active learning

A full development of the following can be found
in (Song et al., 2018). Briefly, Bayes’ rule is applied to
compute an updated GP posterior upon observation of
data points {y, X} from one eye. The posterior is a GP
and probabilistically constrains the latent function as

described above. Because of the nonlinear link function
and use of the Bernoulli likelihood, the posteriors
cannot be solved for in closed form. They are therefore
estimated via approximate inference techniques, in this
case, variational inference (Hensman, Matthews, &
Ghahramani, 2015; Titsias, 2009).

Variational inference is a technique that finds the best
approximation of the true posterior distribution from
a family of simpler distributions by minimizing the
Kullback-Liebler divergence between the approximate
and true posteriors (Gardner, Pleiss, Weinberger,
Bindel, & Wilson, 2018). We can efficiently estimate
the posterior distribution of the GP model, which
when trained with all existing data for that eye can
compute model updates for any new sample x* ∈ X*

defined over spatial frequency and visual contrast.
Therefore the new sample x* that, upon observation,
maximizes some utility function U(x*) is optimal.
We define an acquisition function for obtaining this
sample as

A (x∗) = argmaxx∗∈X∗U (x∗|X, y), (4)

where U( · ) reflects model quality. We implement
uncertainty sampling by defining the utility function as
the differential entropy, which quantifies the uncertainty
associated with the predictive distribution. In this
specific acquisition function, the differential entropy
serves as a proxy for information gain, meaning that
it aims to select the next sample point x* that would
maximize the information about the underlying latent
function (Houlsby, Huszár, Ghahramani, & Lengyel,
2011). This is consistent with the overall goal of
Bayesian active learning, which seeks to build an
accurate model with as few samples as possible.

Methods

Simulations

Ground truth models for four canonical CSF
phenotypes were constructed from textbook threshold
curves, as depicted in Figure 1 (Kalloniatis & Luu,
1995). These curves are maximally smooth in shape and
occupy extremes in the domain of likely CSFs. Similarly,
ground truth CSF models for seven neurotypical
individuals and 12 individuals with a diagnosis of
schizophrenia were constructed from threshold values
extracted at discrete spatial frequencies during a CSF
training regimen (Figure 2).

The convention for all plots similar to Figures 1 and 2
is logarithmic spatial frequency versus logarithmic
visual contrast. Spatial frequency tick marks indicate
octaves while contrast tick marks indicate decades.
Even CSF curves are plotted on axes of contrast as
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Figure 1. Canonical CSF curves representing typical contrast
detection thresholds for four different disease phenotypes.
These phenotypes illustrate the general shapes of CSFs, as well
as variations in loss of visual function across spatial frequency
for different clinical conditions. Prior belief used for all
informative prior conditions is shown in grayscale.

opposed to reciprocal contrast to promote consistency
when responses to stimuli at various contrast values are
also plotted on the same axes. Quantification of curve
fits are made in units of log contrast.

In all cases, threshold curves as a function of spatial
frequency were simulated by splines. The resulting
threshold curves were used to create generative ground

truth CRF models representing a visual pattern
detection task as a function of spatial frequency
and visual contrast. At each spatial frequency a
one-dimensional logistic psychometric curve was
constructed using the four-parameter model given
in Equation 3 to define the mean, corresponding to the
0.5 probability detection threshold. The sigmoid for the
simulations was given by the standard logistic function:

φ (κ ) = 1/(1 + exp (− (κ − θ ) /σ ) . (5)

A different sigmoid than that modeled in MLCRF
was deliberately selected to evaluate estimator
robustness. A plausible spread of 0.08 was simulated
across all spatial frequencies (Zhao et al., 2021).
The impact of spread on the behavior of this type
of estimator across 2 orders of magnitude has been
explored previously, and its precise value is unlikely to
influence the initial conclusions drawn about estimator
performance (Song et al., 2017; Song et al., 2018). At
any indicated contrast level, binary observations (i.e.,
detected or not detected) were generated by sampling
from a Bernoulli distribution with success probability
given by ψ . A total of 23 generative models formed
the collection of simulated eyes evaluated in this
study.

Psychometric field for contrast response

The psychometric field defining the CRF over the
domains of spatial frequency and contrast is given
by ψ(ω, κ), whereas the underlying latent function is

Figure 2. CSF curves estimated from an intermediate stage of a contrast training study for participants with schizophrenia (left) and
participants with no known neurological disorder (right). These CSFs have more local variations than the overly smooth canonical
curves. Prior belief used for all informative prior conditions is shown in grayscale.
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defined by f(ω, κ). With the setup described above, the
entire estimation procedure for the CRF is reduced
to learning a GP over the latent function. A GP is
completely determined by its mean and covariance
functions (Rasmussen & Williams, 2006). By selecting
closed forms for these functions, estimation further
reduces to updating the corresponding parameters,
which are then combined with observed data to
generate a posterior belief about the CRF. Because
the parameters in question reflect the GP rather than
the latent function, they represent hyperparameters of
the overall model, yielding a formally semiparametric
estimator for contrast response.

Many different functional forms can be selected for
the mean and covariance functions to incorporate a set
of assumptions about the form of the latent function.
These form looser constraints than familiar parametric
model forms, retaining flexibility to fit a wide variety of
functional shapes while potentially fitting those shapes
with fewer data than other estimator classes.

The GP mean function is assumed to be constant:

μ (x) = μ(ω, κ ) = c, (6)

this may seem to be a counterintuitive choice because
the shape of the CSF is known not to be flat. It
is important to remember, however, that the mean
function parameterizes the GP and not the latent
function. In this form it is capturing the overall contrast
sensitivity across all spatial frequencies. As such, this
hyperparameter alone could be useful at distinguishing,
for example, cataracts from normal vision.

Covariation along the contrast dimension is assumed
to be linear. When combined with the normal CDF
link function, the result is a sigmoid that is shifted
and scaled to reflect the psychometric properties
of contrast detection. Covariation in the spatial
frequency dimension is assumed to be continuous and
smooth. Parametric estimators cannot easily represent
such broad constraints without incorporating many
parameters, typically increasing data requirements
to fit all of them. The form of the GP covariance
function, on the other hand, can be compactly
formulated to represent both the linear and smoothness
assumptions:

K
(
x, x′) = K

(
(ω, κ ) ,

(
ω′, κ ′))

= s12
(
κκ ′) + s22exp[−(ω−ω′ )/2l2]. (7)

The hyperparameters s1 and s2 represent scaling
factors and l represents a length constant along the
spatial frequency dimension. Other kernel designs are
possible, but this design has been particularly successful
at estimating behavioral functions similar to the CSF
(Song et al., 2017).

Implementation

All simulation, machine learning, and evaluation
software was written in Python using major libraries
PyTorch (PyTorch 1.13, n.d.) and GPyTorch (GPyTorch
1.8.1, n.d.). Project information, including code and
data necessary to replicate these experiments, can be
found at https://osf.io/cpkn5/.

Fifteen logarithmically spaced spatial frequencies
per octave were used for the estimation such that ω ∈
[1, 64] cycles per degree (i.e., 6 octaves) for Experiment
1 and ω ∈ [0.5, 32] cycles per degree for Experiment 2.
Contrasts used for the estimation included κ ∈ [0.001, 1]
(i.e., 3 orders of magnitude) with 30 logarithmically
spaced values per decade. Therefore input values
used for modeling, prediction, and quantification
were discretized over a 91 × 91 grid with just over
8000 values. This resolution is arbitrary and could be
modified as needed.

Samples were generated either via randomly
drawing uniformly from all possible combinations of
frequency and contrast on the evaluation grid, or from
actively learning the most informative next sample for
estimation. In both cases, two types of priors were
selected to combine with newly observed data to form
the posterior. One was uninformative, including no
information about CSFs, and the other was informative,
including canonical CSF shape information.

For the uninformative prior condition, the mean
function of the GP was initialized with c = 0. Zero on
the latent function maps to a probability of success
of 0.5, implying that without any data, the estimator
assumes maximum uncertainty about the shape of the
CRF. The covariance function was initialized such that
s1 = s2 = l = 1. The intention of this prior was to allow
the sampled data to speak for themselves to deliver a
final estimate with few assumptions. In every condition,
a set of phantom shaping data points were added to
assist estimator convergence. These values indexed
detection failures at locations well beyond any reported
human CSF curve. At each octave of spatial frequency,
a phantom failure at a contrast of 0.0005 was added.
Another phantom failure was added at (128, 1).

For the informative prior condition, 1000 uniformly
random samples across spatial frequency and contrast
were divided equally among the four canonical
phenotypes observed in the range of [0.5, 64] cycles
per degree and labeled by the corresponding generative
models. A single GP was fit over [1, 64] cycles per degree
to this entire set of observations. The scaling factor of
the linear kernel was then multiplied by 0.4 in order
to expand the transition between stimulus response
regions. This manipulation “flattened the prior” to
weaken the bias it injected into the model while still
staying informative. The posterior mean of this GP was
then used to initialize the mean function of all later
GPs. This exact prior was used for Experiment 1. For
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Experiment 2, the GP was fit over [0.5, 32] cycles per
degree. The relationship between this prior and ground
truth CSFs can be seen in Figures 1 and 2, revealing
a wide transition between behavioral response regions
overlapping the threshold boundaries.

The spatial frequency and contrast of the first
eight samples for all experimental conditions were
deterministically selected according to a Halton set
(Halton, 1964). Halton sets are space filling but not
random or grid-like, so every condition experienced
identical primer sequences that sampled the stimulus
space broadly. Subsequent stimuli were selected
either randomly or actively. At the expense of some
overall efficiency, this procedure promotes stable active
learning. The primer sequence can alternatively be
selected by other criteria, such as the set of stimuli
determined from population screening studies to be
most useful for distinguishing important phenotypes.

Two separate experiments were conducted to test
the new estimator under different conditions. For
Experiment 1, four ground truth generative models were
created from the four canonical phenotypes depicted
in Figure 1 via high-density sampling and cubic spline
fitting. Simulated psychometric spreads were fixed at
0.08. These phenotypes were selected to demonstrate
estimator performance under extremes of phenotypic
variation. Four combinations of sampling methods
(random, active) and prior selection (uninformative,
informative) were used to acquire data from the
generative models. After each new data point, the CRF
was updated as a posterior defined over the entire
input domain. The φ = 0.5 contour of the predictive
posterior mean of the CRF became the CSF estimate
because this value forms the equiprobable boundary
between the two response classes. For the symmetric
lapse and guess rates used here, this is also equivalent
to ψ = 0.5. At octaves of spatial frequency relative to
0.5 cycle/degree, the root mean square error (RMSE)
in units of log10 contrast between the ground truth
CSF and the estimated CSF was quantified. Spatial
frequencies for which the CSF would have taken values
greater than 1 are excluded from this calculation. The
estimated CSF was discretized to the nearest contrast
grid value. Each phenotype was evaluated separately for
10 repetitions and the average behavior summarized.

Because the canonical examples are overly smooth,
Experiment 2 made use of generative ground truth
models taken from a cohort of neurotypicals and a
cohort of individuals diagnosed with schizophrenia
performing a contrast detection task as part of a
previous study (Yaghoubi et al., 2022). The study was
conducted across three sites: Weill Cornell Medicine
(WCM), Nathan S. Kline Institute for Psychiatric
Research (NKI), and the University of California,
Riverside (UCR). Seven neurotypical (NT) participants
and 12 patients with schizophrenia (SZ) were recruited
for the study. The total number of participants at each

site was as follows: WCM: six (four males; age: mean
= 33.5 years, SD = 8.48); NKI: six (three males; age:
mean = 45.6 years, SD = 9.54); and UCR: seven (two
males; age: mean = 19.93 yrs, SD = 2.15). All subjects
reported normal or corrected-to-normal vision.

The gamified training paradigm used in this
experiment derived from (Deveau, Ozer, & Seitz, 2014).
The task was administered using an Apple iPad Pro
12.9 inch screen (second generation) at a luminance of
600 cd/m2, resolution of 2732 × 2048 pixels and pixel
density of 264 pixels per inch. The viewing distance
of all participants from the screen was 20 inches. The
iPads used at all sites were calibrated similarly to
reduce the variance between each site where the study
was conducted. The stimulus set consisted of Gabor
patches (targets) at six spatial frequencies. An initial
test was performed for each group of participants to
approximate the maximum spatial frequency that could
be perceived. The spatial frequencies used for NT were
0.5, 1, 4, 8, 16 and 32 cycles per degree and for SZ were
0.5, 1, 2, 4, 8 and 16 cycles per degree, respectively. The
stimuli were also presented in 8 orientations (0°, 22.5°,
45°, 67.5°, 90°, 112.5°, 135°, 157.5°). Gaussian windows
of Gabors varied with σ between 0.25° and 1° and with
phases (0°, 45°, 90°, 135°).

Each group of participants underwent a slightly
different training procedure (i.e., SZ performed training
for up to 40 sessions [one session per day]), with
each session lasting approximately 30 minutes. NT
performed 40 training sessions in 20 days (i.e., two
sessions per day). Each session consisted of different
blocks where Gabor patches at all six spatial frequencies
were presented.

Each block lasted for 120 seconds where an array
of targets with randomly selected orientation and
increasing spatial frequency appeared all at once
scattered across the screen (Figure 3). The contrast
of the target was adaptively determined using a
three-down/one-up staircase. Contrast was decreased
whenever 80% of the targets were selected and increased
when fewer than 40% of the targets were selected with
a 2.5-second per target time limit. Staircases were
independently run on each spatial frequency across
blocks of training. Spatially varying auditory feedback
was given to the participants (i.e., low-frequency tones
corresponded with targets on the bottom of the screen,
whereas high-frequency tones corresponded to stimuli
at the top of the screen). Thus the horizontal and
vertical locations on the screen each corresponded to
a unique tone. The sounds provided an important cue
to the location of the visual stimuli and were included
to boost learning as has been found in studies of
multisensory facilitation (Shams & Seitz, 2008).

As with most CSF tests, the CSF values from this
study were computed at a small number of discrete
spatial frequencies. Spline interpolation was again
used to create smooth ground truth CSFs, this time of
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Figure 3. Task design used in Experiment 2. Participants were initially presented with a sample target image and were also shown the
remaining number of targets that needed to be identified on the screen. At the end of each block, they were provided a summary of
their performance. Training blocks varied in terms of the orientation and spatial frequency of the targets.

individual participants’ CSF curves. A value of 0.08
was again used as the fixed psychometric spread to
produce simulated contrast response values from the
generative models. Newly generated raw data in this
fashion were used to train a multidimensional GP
probabilistic classifier, as in Experiment 1. Estimated
CSF values were again compared to ground truth CSF
values at octave spatial frequencies with RMSE. Instead
of multiple repeats of the same phenotype, however,
in this case performance was averaged across all 19
individuals in the data set.

Standard machine learning tuning procedures to
achieve consistent model convergence and high model
accuracy were conducted only for Experiment 1. All
estimator configurations for Experiment 2 were fixed at
these values and not adjusted in an attempt to improve
outcomes.

Evaluation

In all cases the predictive posterior mean over spatial
frequency and contrast is taken as the output of the

MLCRF estimator. Because of the nature of Gaussian
processes, this is equivalent to a maximum a posteriori
estimate. It should be kept in mind, however, that this
method is fully Bayesian, meaning that every point
estimate in the displayed predictive posteriors actually
represents a single point in a complete distribution.

MLCSF estimates were extracted from MLCRFs
as the 0.5 probability counter as a function of spatial
frequency. This definition has been shown empirically
in both simulations and in human experiments to
represent an unbiased estimator of the underlying
threshold (Song et al., 2015; Song et al., 2017).
Deviation from ground truth was quantified by RMSE
as described above.

QuickCSF comparison

To discern relative performance of MLCSF
against an established CSF estimation procedure, an
independent implementation of the quickCSF method
(Lesmes et al., 2010) was evaluated under similar
experimental conditions. This code base (Canare, Ni,
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& Lu, 2019) was adopted with minimal modification,
limited to altering the task design from discrimination
to pure detection (i.e., no response errors simulated or
estimated) and replacing the source of responses from
the default method to the same generative modeling
procedures used for MLCSF. Performance was
quantized using the same procedures as for MLCSF.

Results

Experiment 1

The first experiment involved estimating several
canonical CSF phenotypes. Figure 4 depicts for
each canonical phenotype the results of one of
these estimation runs with 100 randomly sampled
combinations of stimulus spatial frequency and
contrast, beginning with an uninformative prior belief.
The 0.5 probability contours of the MLCRF predictive
posterior mean functions visually correspond to the
ground truth CSF functions to a reasonable degree. The

capability of this estimator to infer smooth functions
indicative of standard disease variants is apparent.

The limitations of random sampling are also on
view, as there are multiple regions where, by chance,
no samples were taken near threshold. Samples near
threshold are intrinsically more informative about
the location of that threshold than samples farther
away. One of the substantive contributions of modern
machine learning has been the development of
numerical algorithms for implementing optimization
over a wide variety of functional definitions. Even
though MLCRF estimates a nonparametric function,
for example, the most informative data to collect for
refining that estimate can readily be computed within
this framework, whereas that is not feasible with
classical nonparametric methods.

Active learning is the machine learning principle that
seeks to select new samples (i.e., stimulus parameter
combinations) such that their observation provides
the most information about the latent model. This
procedure is analogous to optimal adaptive Bayesian
estimation for parametric models (Kontsevich & Tyler,
1999; Watson & Pelli, 1983). An example with 92

Figure 4. Four canonical CSF phenotypes were converted to generative models to create simulated binary detection data. Ground
truth CSF curves are shown in magenta. Successful detections of a visual pattern in the stimulus are indicated by blue plus signs,
whereas failures are indicated with red diamonds. One hundred samples are randomly distributed in spatial frequency and contrast.
Grayscales indicate the learned predictive posterior means from the MLCRF estimator. Dashed turquoise lines represent 0.5 detection
probability thresholds determined from the predictive posteriors, indicating that the CSF functions were learned reasonably well.
Deviations from ground truth clearly arise from a low density of sampling in the vicinity, which is a limitation of random sampling and
fixed-location sampling (i.e., grid search or method of constant stimuli, not shown). RMSE values in log contrast units for these MLCSF
curves are as follows: normal, 0.205; mild amblyopia, 0.139; cataracts, 0.0678; multiple sclerosis, 0.148.
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Figure 5. The MLCRF estimated with 100 samples in the active learning condition for one canonical phenotype. (A) Simulated
behavioral responses (blue plus signs = success, red diamonds = failure), ground truth multiple sclerosis CSF (solid magenta curve),
learned MLCSF (dashed cyan curve) and predictive posterior mean (grayscale) plotted according to the conventions of Figure 4. (B)
MLCSF curve (dashed cyan) replotted along with the ground truth CSF curve (solid). Ordinate units indicate stimulus contrast. RMSE
value in log contrast units for this MLCSF curve is 0.089. (C) MLCRF psychometric curve at four cycles per degree (dashed cyan) plotted
along with the ground truth psychometric curve (solid).

samples of active learning (following 8 Halton primer
samples) and uninformative prior for the canonical
multiple sclerosis phenotype is shown in Figure 5.

Active learning involves optimally selecting the next
stimulus to deliver based on how informative that new
data point would be for updating the model. After
training model Mi on the initial i sample points during
active learning, the most informative next sample point
is determined, that stimulus is delivered, the simulated
participant response is observed, and a new modelMi+1
is learned with i+1 points and model Mi as the prior.
This procedure continues until data from 100 samples
are accumulated.

As can be seen in Figure 5A, most of the samples
in the active learning condition are distributed near
the eventual threshold curve, which would be expected
for an acquisition function seeking to maximize
informativeness. The ability to rapidly converge on
the most informative samples is a key contributing
factor of real-time optimization enabling more efficient
testing procedures. Most of the samples away from
threshold aid in recovering from false-positive responses
that occurred early in the simulated experiment. The
predictive posterior MLCRF mean function can be
seen in grayscale, indicating that at every combination
of spatial frequency and contrast within the domain of
support, the MLCRF estimator returns an estimated
probability of stimulus detection. This ability to

deliver item-level predictions makes the MLCRF a
fully predictive model—in other words, a complete
psychometric field.

Direct comparisons between estimates and ground
truths for this example are visualized in the side panels.
The MLCSF estimate and ground truth threshold
as a function of spatial frequency align visually
in Figure 5B. Accurate estimation of the CSF is the
goal of this research because of its established clinical
utility. Just as in the case of models using a truncated
parabola, the MLCSF is continuous. Its lack of rigid
shape constraints, however, demonstrates its flexibility,
indicated here by subtle curvature details.

The MLCSF represents a contour within the
MLCRF, made in the current experiments by slicing
the predictive posterior mean function parallel to the
spatial frequency/contrast plane at a value of 0.5. One
can also slice the MLCRF perpendicular to this plane
at a single spatial frequency to reveal its psychometric
shape. The resulting sigmoid for this example at four
cycles per degree is depicted in Figure 5C, showing
the learned correspondence to the generative ground
truth model. Estimating a single psychometric curve
accurately with conventional methods is generally
considered to require hundreds of samples, yet only
100 samples total have been accumulated for the entire
MLCRF model here. This rapid convergence to a fully
predictive model reveals the efficiency of the estimator.
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Recall that the MLCRF is a probabilistic classifier,
so its predictive posterior reflects a subdivision of
feature space into separate regions likely to give rise to
one observation or the other (i.e., success or failure).
Greater uncertainty of the class boundary leads to
wider transitions between regions, which translates into
a larger psychometric spread in plots such as Figure 5C.
This example was selected to illustrate a region of the
MLCRF with shallower slope, indicating relatively
lower confidence in the threshold estimate. Conversely,
greater certainty leads to narrower transitions. If an
application calls for unbiased estimates of psychometric
spread, the use of the posterior mean function of a
probabilistic classifier observed through a sigmoidal
link function has been shown to be effective (Song et
al., 2017; Song et al., 2018). Because of this earlier
work and the yet-to-be-established utility of spread for
clinical applications of contrast detection, no formal
analysis of spread estimation is performed for the
current study.

The previous analysis provided proof-of-concept
evidence in support of the accuracy and efficiency of
the MLCRF estimator and, by extension, the MLCSF
estimator. By updating a MLCSF model each time
a new data point is collected and comparing to CSF
ground truth, the average accuracy of the estimator
can be evaluated as a function of the amount of
data collected (i.e., the sample count or number of
behavioral trials).

In repeat simulations for each canonical phenotype,
two independent estimator configurations were
evaluated in a 2 × 2 arrangement: sampling strategy
and selection of prior. The two choices for sampling
were random, as depicted in Figure 4, and active, as
depicted in Figure 5. Random sampling represents
a way to quantify the performance of a machine
learning estimator independent of its internal
optimization algorithm, which can perform poorly for
complex functions by failing to converge or becoming
trapped at local optima. Assuming the optimizer is
functioning well, active sampling is expected to produce
systematically better performance than random
sampling.

The two choices for prior were uninformative and
canonical phenotype mixture. An informative prior
incorporates knowledge into the model that originates
from beyond the immediately collected data. A prior
represents an inductive bias, and a bias in the right
direction is expected to improve the efficiency of the
estimator (i.e., allowing it to systematically converge to
a final estimate faster than with the use of an unbiased,
uninformative prior). A poorly chosen bias can, on the
other hand, push initial learning in the wrong direction
and decrease efficiency.

The four combinations of these estimator
configurations were evaluated for each canonical
phenotype 10 times and the resulting average MLCSF

accuracy compared against ground truth CSFs plotted
as a function of sample count in Figure 6. For all
canonical phenotypes and estimator configurations, the
MLCSF converged toward an accurate representation
of ground truth CSF values, as signified by the trend
toward low root-mean-square errors. For a visual
indication of estimator quality at a given RMSE
value, refer to Figures 4 and 5. MLCSF estimation
for cataracts performed systematically worse than
the other phenotypes because the randomization
function of the generative model always delivered a
lapse in the first eight data points for this particular
phenotype.

As expected, active learning, with sampling
intentionally targeting threshold values, accelerated
convergence toward accurate CSF representations.
Average active sampling performance achieved
equivalence to 100-sample average random sampling
performance in fewer than 30 samples in all cases.
Given that the first eight samples were deterministic for
every run, approximately 20 active samples turned out
to be about as effective as approximately 100 random
samples. This expected behavior confirms that the
optimization component of MLCRF is functioning as
designed.

A more complex scenario can be seen, however,
when comparing the relative contributions of different
priors. Little relative efficiency gain (i.e., more rapid
convergence) can be seen with the incorporation of an
informative prior, either for random or active sampling.
It is possible that any effect of an informative prior at
the beginning is muted by the phantom samples and
the Halton samples used as a primer sequence. Halton
sampling was included based on previous experience
to prevent runaway degenerate sampling for the active
learning, uninformative prior condition. Perhaps an
informative prior can supplant this kind of heuristic,
although there is practical value for behavioral testing
scenarios in having participants start with a few trials
that are very likely to be well above and well below their
performance thresholds.

The quickCSF method can be seen to converge
to its final estimates even more quickly than active
MLCSF, although the final estimates themselves are
lower in accuracy. For these canonical phenotypes,
quickCSF requires only 20 to 30 samples to converge.
Performance of quickCSF is also consistent across
multiple experiments, indicating reliability similar to
active MLCSF and considerably higher than random
MLCSF.

Experiment 2

The results of Experiment 1 demonstrate that the
general form of machine learning psychometric field
estimation can successfully be applied to estimating
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Figure 6. Mean ± standard deviation RMSE values in log contrast units of all four canonical phenotypes averaged from 10 repeat
experiments using up to 100 samples of random with uninformative priors (RUP), random with informative priors (RIP), active with
uninformative priors (AUP), and active with informative priors (AIP). Performance of quickCSF on the same estimation tasks is also
shown.

visual contrast response functions for idealized
phenotypes. To further illustrate the ability of this
novel estimator to represent a variety of actual
CSFs estimated from individuals in the course of
human experiments, the types of manipulations from
Experiment 1 were replicated for different individuals in
a second experiment.

Similarly to Experiment 1, each individual CSF
depicted in Figure 2 was used to create a generative
ground truth model CSF. An example from an
individual with schizophrenia plotted according to the
conventions of Figure 5 can be seen in Figure 7. The
flexibility of the machine learning estimator is apparent
in this example just as in Figure 5.

The individual ground truths compared against
MLCSF estimates from 8 Halton + 92 active samples
with uninformative priors can be seen in Figure 8.
Visually, MLCSF estimates show close alignment

with the ground truths, also reflected in the low
accompanying RMSE values. Notably, several examples
deviate substantially from standard parametric forms
typically used for CSF estimators, including the
truncated parabola. This result further implies that
the MLCSF estimator is flexible enough to accurately
reflect a wide variety of individual CSF shapes.

Performance of the quickCSF estimator for this set
of ground truths reveals, as expected, that the truncated
parabola functional form matches diverse phenotypes
with a wide range of goodness-of-fits. The quickCSF
RMSE values are almost always larger than theMLCSF
values, confirming that the nonparametric estimator is
able to fit heterogeneous curves systematically better
than a low-order parametric form.

As in Experiment 1, the same two independent
estimator configurations were evaluated for individuals
in a 2 × 2 arrangement of sampling strategy and prior
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Figure 7. The MLCRF estimated with 100 samples in the active learning condition using plotting conventions of Figure 5. (A) Simulated
behavioral responses, ground truth of a single schizophrenic CSF, and MLCSF estimate superimposed on the predictive posterior
MLCRF mean. (B) MLCSF curve replotted along with the ground truth CSF curve. Ordinate units indicate stimulus contrast. RMSE value
in log contrast units for this MLCSF curve is 0.035. (C) MLCRF psychometric curve at four cycles per degree plotted along with the
ground truth psychometric curve.

Figure 8. Comparison of ground truth CSF curves with MLCSF and quick CSF curves estimated using 100 samples in the active learning
condition with uninformative prior. Twelve individuals with schizophrenia and seven neurotypical individuals are represented.
Relative accuracy for MLCSF and quickCSF is shown in the lower right panel.
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Figure 9. Mean ± standard deviation RMSE values of all
neurotypical and schizophrenic CSFs for the same four
experimental conditions as in Figure 6, with the same plotting
conventions.

as a function of sample count and the results shown
in Figure 9. This time, however, each CSF was modeled
only once, and variation in performance was evaluated
across the entire cohort. Once again, active learning
showed an 80% to 90% efficiency gain in converging to
accurate CSF estimates over random sampling. Once
again, little systematic effect of the informative prior is
observed under these experimental conditions.

Variability in Experiment 1 is akin to test-retest
reliability of the MLCSF estimator, whereas variability
in Experiment 2 also includes the variation from
different CSF shapes. The latter is therefore likely to
be a more appropriate representation of the variation
expected in estimator performance for an arbitrary
CSF shape. It is also worth observing that variation
from active sampling is systematically lower than from
random sampling in all conditions, as expected.

Performance of the quickCSF estimator shows some
similarity to that observed in Figure 6, with average
convergence again completed by around 20 to 30
samples. Average rate of convergence and average final
fit accuracy are lower than active learning MLCSF,
and variability is higher. In fact, all quickCSF metrics
fare more poorly for Experiment 2 than Experiment
1. The canonical phenotypes of Experiment 1 are
smoother than might be typically encountered, while
the individual phenotypes recorded from a visual
training task could be less smooth than average.
Although quickCSF shows performance advantages
when ground truth phenotypes match its underlying
model, the relative lack of flexibility yields more
variable performance when phenotypes themselves are
more variable.

Discussion

Psychometric estimator design for research or
clinical applications faces common considerations.
Nonparametric methods such as adaptive staircases are
individually efficient at estimating single thresholds by
themselves. When strung together they do produce the
most systematically accurate conventional estimators of
threshold curves such as the CSF (Watson & Ahumada,
2005), but with diminishing returns for efficiency at
high dimensions and resolutions. Figure 2 shows
examples of the kinds of curves that result. A major
disadvantage of this approach is the need to interpolate
threshold values between discretized, pre-selected
abscissa values on the curve. For phenotypes with steep
drop-offs or other local nuances, this uniform sampling
approach decreases estimation accuracy. Furthermore,
this discretization limits the ability to exploit additional
information to improve estimation efficiency without
relying on assumptions about the functional form of
the CSF.

Alternatively, parametric methods can incorporate
outside information, such as constraints on CSF shape,
and provide continuous threshold estimates. CSF
estimators designed along these principles can achieve
high efficiency at the expense of some accuracy (Hou,
Lesmes, Bex, Dorr, & Lu, 2015; Lesmes et al., 2010;
Watson & Ahumada, 2005; Zhao et al., 2021). Neither
conventional parametric nor nonparametric models
of CSF learn item-level prediction, however, because
assumptions about the model likelihood are used to
enhance efficiency gains.

This article describes the development of a
probabilistic machine learning classifier designed to
learn fully predictive models of item-level contrast
detection responses from human participants for
patterned visual stimuli as a function of spatial
frequency and visual contrast. From these MLCRFs,
MLCSFs can be estimated as a single performance
threshold contour, here taken to be the 0.5 detection
probability contour. Similar methods have been
successful at estimating detection thresholds for
audibility (Cox & de Vries, 2021; Schlittenlacher et al.,
2018; Song et al., 2015) and visual fields (Chesley &
Barbour, 2020).

As expected for a nonparametric estimator, accuracy
for the MLCSF was generally high for a variety of
shapes. Efficiency was poor for the tested estimator
configuration with random sampling, however, which
was not unexpected given previous findings (Song et al.,
2018). Active learning led to more informative stimulus
delivery, yielding faster convergence to accurate CSF
estimates. Including an informative prior did not
systematically improve estimation efficiency in these
experiments, which was an unexpected result. Perhaps
the other elements of the estimator configurations,
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such as the initial deterministic sampling or the
phantom observations, muted the impact of the
particular informative prior that was used. A reasonable
conclusion of these results is that an informative prior
under these conditions provides little performance gain,
although it might under other conditions.

Tested on the same ground truth CSFs, the quickCSF
estimator lived up to its name and converged rapidly
toward its final estimate when ground truth CSFs
were stereotypical. In other words, the inductive bias
of quickCSF seems to be well matched to canonical
phenotypes. QuickCSF performed less well with the
phenotypes derived from a perceptual training task,
however. In this case the inductive bias of the truncated
parabola led to underfits of the resulting phenotypes,
leading to an irreversible loss in both accuracy and
efficiency. This performance decrement for quickCSF
relative to MLCSF occurred even though the former
was preferentially advantaged with clean training data
(i.e., no losses or guesses to disrupt learning).

The MLCSF inductive bias was not as well
matched to canonical phenotypes, leading to slower
convergence than quickCSF, but its flexibility allowed
it to achieve approximately the same average accuracy
on both experiments. Many other options exist to
tune the MLCSF inductive bias, including other
implementations of CSF priors, mutually conjoint
estimation of multiple CSF curves (Barbour et al., 2018;
Heisey, Buchbinder, & Barbour, 2018), multiplexed
detection tasks (Gardner, Song, Cunningham, Barbour,
& Weinberger, 2015), and perhaps the most efficient
of all, Bayesian active model selection from among
predefined phenotypes (Gardner, Malkomes, et al.,
2015; Larsen, Malkomes, & Barbour, 2020; Larsen,
Malkomes, & Barbour, 2021).

In the latter framework, each new data point is
used to accumulate evidence for or against discrete
hypotheses defined either by phenotypic examples or
an individual’s previous test results. This procedure
retains the flexibility of nonparametric estimation while
requiring quite a small number of samples to reach a
confident conclusion. Its potential utility might lie in
beginning each eye’s CSF test as a screening procedure
to first try to rule out any pathology efficiently. If this
cannot be accomplished with high confidence using
a small number of samples, the acquisition function
could then switch to optimally determining the actual
shape of the CSF, as in the current study. At each phase
of testing the question of greatest interest is addressed
optimally, which leads to considerable time savings
for a given sensitivity and specificity. This efficiency
advantage is likely to be highest with highly asymmetric
pretest probabilities, such as for screening tests in
populations with no known visual disorders.

A distinction in clock time also exists between
quickCSF and the currently implemented MLCSF.
Retraining quickCSF models required a consistent

model retraining time of 0.61 ± 0.024 second.
Retraining MLCSF, however, required steadily
increasing model retraining times as data quantity
increased (e.g., 1.0 ± 0.019 second at 10 data points and
2.3 ± 0.049 seconds at 100 data points). These values
allow for real-time model updating compatible with
standard pauses between behavioral tests for the typical
amounts of data expected for MLCSF. All of these
computations were made without GPU acceleration on
a Dell Precision 5820 Workstation with Xeon W-2245
8-core 3.90 GHz CPU and 128 GB of RAM.

The MLCRF learns a psychometric spread at
every spatial frequency rather than assuming it.
Unfortunately, examples of such multidimensional
models do not exist to compare against in terms of
efficiency. The utility of this capability is unclear at
present because spread estimates are not generally
used, but there could be subtle variations in spreads for
different phenotypes that might make sensitive testing
procedures more likely to resolve certain pathologies
(Foley & Legge, 1981). Thus this fully predictive model
could open up avenues in research for the exploration
of deeper behavioral response relationships not yet fully
considered in psychophysics and vision science.

Finally, although the MLCRF as coded can make use
of small or large amounts of data to improve estimation
properties, the framework it is based on could easily
accommodate different machine learning algorithms as
data available to constrain models increase in number. It
is not unreasonable to consider that in the future, once
large numbers of individuals have completed MLCRF
tests, the mass of data could be used to train even more
flexible machine learning models that can exploit many
small correlations in widely divergent data streams to
accommodate more refined individualized phenotypes.
The models themselves could grow in complexity,
incorporating more details about visual and brain
health than simply a person’s ability to resolve visual
images at different spatial frequencies and contrasts.

Conclusions

A nonparametric Bayesian estimator learning from
simulated contrast detection behavioral responses can
provide accurate estimates for a variety of contrast
sensitivity function shapes in a few dozen samples
under ideal conditions. This estimator makes use of
recent developments in probabilistic machine learning
classification that provide it with potential advantages
over classical estimators at the cost of increased model
complexity. Notably, it can accommodate a wide set of
constraints on functional form; it is a learned predictive
model; it is a fully probabilistic model; and it can be
extended to incorporate related data from a variety
of sources. It is more accurate and, in at least some
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scenarios, more efficient than classical parametric
estimators. It has the potential to become even more
efficient by imposing a stronger inductive bias, or
more accurate by continuing to learn as more data
are acquired. Future work will extend and improve
the estimator algorithm in ways described above and
evaluate its performance in real-time human data
acquisition.

Keywords: contrast sensitivity, psychophysics, machine
learning, bayesian modeling, active learning
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