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Purpose: Retinal images contain rich biomarker information for neurodegenerative
disease. Recently, deep learning models have been used for automated neurodegen-
erative disease diagnosis and risk prediction using retinal images with good results.

Methods: In this review, we systematically report studieswith datasets of retinal images
frompatients with neurodegenerative diseases, including Alzheimer’s disease, Hunting-
ton’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and others. We also
review and characterize the models in the current literature which have been used for
classification, regression, or segmentation problems using retinal images in patients
with neurodegenerative diseases.

Results: Our review found several existing datasets and models with various imaging
modalities primarily in patients with Alzheimer’s disease, with most datasets on the
order of tens to a few hundred images. We found limited data available for the other
neurodegenerative diseases. Although cross-sectional imaging data for Alzheimer’s
disease is becoming more abundant, datasets with longitudinal imaging of any disease
are lacking.

Conclusions: The use of bilateral and multimodal imaging together with metadata
seems to improve model performance, thus multimodal bilateral image datasets with
patient metadata are needed. We identified several deep learning tools that have been
useful in this context including feature extraction algorithms specifically for retinal
images, retinal image preprocessing techniques, transfer learning, feature fusion, and
attention mapping. Importantly, we also consider the limitations common to these
models in real-world clinical applications.

Translational Relevance: This systematic review evaluates the deep learning models
and retinal features relevant in the evaluationof retinal imagesof patientswithneurode-
generative disease.

Introduction

The retina is the only neural tissue in the human
body that can be directly visualized noninvasively.
Findings from retinal imaging can be informative
regarding the health of the brain; many abnormali-
ties in retinal imaging have been linked with cerebral
pathology.1

In the past decade, image analysis has been revolu-
tionized by convolutional neural networks and other
promising emerging technologies for automated image
analysis. These technologies undergoing further devel-
opment may possibly augment the diagnostic capabil-
ities of several ophthalmologic imaging modalities.
Machine learning algorithms may assist us in detecting
information in retinal images that may not be readily
apparent without computational algorithms.2 Several
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groups have been using machine learning algorithms
to determine if systemic patient health information
can be gleaned from retinal images. Such algorithms
have demonstrated good accuracy at predicting quanti-
tative variables, such as coronary artery calcium or
serum creatinine, and also qualitative variables, such as
smoking status or biological sex using retinal fundus
images alone.3 It is difficult to identify which features
in the retinal images are used by the machine learning
algorithms to glean this information. However, there
may be more information contained in retinal images
than was previously known, and it may be necessary
to apply computational algorithms, such as machine
learning to establish this.4

The retina is known to exhibit many of the classic
pathologic features of neurodegenerative disease.
Multiple postmortem pathology studies have identified
beta-amyloid plaques and neurofibrillary tangles in the
retina of patients with varying stages of Alzheimer’s
disease (AD).5–8 In patients with Parkinson’s disease
(PD), pathology studies have found lower levels of
dopamine in the retina.9,10 The neurodegeneration
that accompanies Huntington’s disease (HD) and
amyotrophic lateral sclerosis (ALS) may appear in the
retina as well.11,12 Case-control comparisons suggest
that patients with mild cognitive impairment (MCI)
or unspecified dementia (D-US) also exhibit retinal
thinning.13,14

Given the known correlation between retinal health
and neurodegenerative disease, there is good potential
that deep learning algorithms might be able to ascer-
tain information regarding cerebral disease from retinal
images.15 Indeed, a growing amount of literature has
documented correlations between the progression of
neurodegenerative disease and physician-observable
retinal findings, such as retinal arteriolar and venular
caliber, vessel tortuosity, retinal layer thickness, and
optic disc morphology.16 Future research will likely
focus on determining what information is contained
within optical coherence tomography (OCT), OCT-
angiography (OCT-A), and color fundus images.15
Such studies will also need to consider what infor-
mation is not able to be obtained from retinal
imaging.

OCT, OCT-A, and fundus imaging allow for
detailed quantitative and qualitative analysis of retinal
features. OCT uses the reflectivity of light to micro-
image the anatomy of the retina and optic disk. The
peripapillary retinal nerve fiber layer (pRNFL) and
macular ganglion cell layer and inner plexiform layer
(mGCIPL) are especially implicated in neurodegener-
ative states, whereas other markers, such as macular
volume and choroidal thickness, have also been studied.
OCT-A works by comparing retinal layers across time

as blood flows through the capillaries. OCT-A captures
information regarding retinal vasculature, including
microvascular density, branching complexity, and flow
density. Fundus imaging allows for the direct visual-
ization of the macula, optic disk, and retinal vascula-
ture. Vessel tortuosity and branching complexity have
been identified as helpful biomarkers and other retinal
features can be directly visualized through the use of
fluorescence imaging. Each imaging modality provides
a host of information that has revealed retinal manifes-
tations of neurodegenerative disease.

Presently, it seems that current research using retinal
imaging has only scratched the surface of the infor-
mation which deep learning algorithms might provide,
but there are also significant limitations that have yet
to be addressed. Many non-neurologic diseases can
have retinal manifestations indistinguishable from the
features reportedly used by current machine learn-
ing models to distinguish between healthy eyes and
ones with neurodegenerative disease. It will be impor-
tant for future machine learning models to use more
diverse datasets, based upon longitudinal data to evalu-
ate whether machine learning models can identify
specific features that differentiate true neurodegenera-
tive disease fromother diseases with neuroretinal impli-
cations.

Methods

We conducted a systematic literature review utiliz-
ing two searching tools to identify datasets; Google
Scholar and Ovid MEDLINE. Our search criteria
included studies between January 1, 2012, and Febru-
ary 15, 2023, that contain image datasets with identi-
fiable neurodegenerative disease and/ or studies that
utilized deep learning analysis models.

Ovid MEDLINE was used for refined searches,
utilizing multi-level Boolean operators (and, or) and
specific terminology (exp – explode, .mp – multi-
purpose) as described below. As the final compilation
of search parameters, step 11 represents final search
protocol. The conceptual function of these parameters
was to identify all articles with ophthalmic imaging in
the context of neurodegenerative disease (steps 1–7),
which also reported use of a dataset, database, or image
analysis algorithm (steps 8–10). The conceptual search
design is displayed in Figure 1.

1. optic*.mp or ophthalm*.mp or exp Retina/
2. image.mp or imaging.mp or Biometry/ or

Photography/
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Figure 1. Conceptual search design as structured within Ovid MEDLINE search tool. exp, exploded, represents that the search was
expanded to include similar related MeSH terms; .mp, multipurpose, indicates that all areas of the publication (title, abstract, body, etc.)
were searched.

3. exp Tomography, Optical Coherence/ or exp
ophthalmoscopy/ or retinal photography.mp or
fundoscopy.mp

4. exp neurodegenerative diseases/ or exp Hunting-
ton disease/ or exp Alzheimer disease/ or exp
amyotrophic lateral sclerosis/ or exp Parkinsons
disease/

5. 1 and 2
6. 5 or 3
7. 6 and 4
8. exp Dataset or exp Databases, Factual/
9. exp Neural Networks, Computer/ or exp Artifi-

cial Intelligence/ or exp Deep Learning/ or
exp Image Interpretation, Computer-Assisted/ or
exp deep learning/ or exp Diagnosis, Computer
Assisted/

10. 8 or 9
11. 7 and 10.

Google search engine and Google Scholar were
used for broad searches. The searched key terms
were as follows: “retinal photography,” “neurode-
generative disease OCT,” “neurodegenerative disease
fundoscopy,” “Parkinson’s retina,” “neurodegenera-
tive deep learning,” and “neurodegenerative image
dataset.”

Our OVID broad search resulted in 245 studies
and Google resulted in 10 studies. Additionally, we
referenced prior meta-analysis studies from Chrysou et
al.,17 Zhou et al.,18 Jin et al.,19 Chan et al.,20 Noah et
al.,13 Khan et al.,21 Nepal et al.,12 and Katsimpris et
al.22 Following our inclusion criteria, each result and
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dataset were independently reviewed and recorded. In
the setting of incomplete informationwithin the article,
datasets were assumed to be available upon request
(AoR), containing two eyes per case and one image per
eye.

For the review of deep learning models, articles
identified in the primary search described above were
further screened according to whether they involved
predictive models using multivariate data obtained
from imaging, predictive models using raw images as
input, or predictive models using data extracted from
image feature detectors. Articles outside of this scope
were excluded from the review of models presented in
Section 4: “Strategies used for retinal image analysis in
patients with neurodegenerative disease.”

Results

Dataset Summary

In total, our search yielded 154 datasets contain-
ing approximately 70,481 images of 25,053 patients
with neurodegenerative disease and 10,115 healthy
controls. A summary of each dataset type can be found
in Table 1. See Supplementary Table S1 for the compre-
hensive list of datasets. AD was the most represented
disease (47% of datasets, 76% of patients, 66% of
controls, and 74% of images), followed by PD (34% of
datasets, 10% of patients, 26% of controls, and 14% of
images) and MCI (20% of datasets, 4.1% of patients,
15% of controls, and 7.0% of images), whereas D-US
was the least represented (2.6% of datasets, 7.2% of
patients, 0.7% of controls, and 5.6% of images). No
fundus image datasets were found for PD, ALS, and
HD. Two datasets were accessible within the article,
one was open-access, one required an account, one was
unfinished, and the rest (n = 149) were classified as
AoR. Most datasets utilized Heidelberg (54/154) and
Zeiss (56/154) devices, whereas nine other manufac-
turers were also represented. The majority of datasets
were from publications authored in Europe (66/154),
whereas Asia (35/154), the Middle East (25/154), and
North America (24/154) were also well represented,
and a few datasets were generated in Oceania (2/154)
and South America (3/154).

Retinal Findings Common Among One or
More Neurodegenerative Diseases

OCT studies have revealed similarities and differ-
ences in the retinas of patients with various neurode-
generative diseases. Table 2 contains a summary of the
retinal findings organized by disease. Due to variation
in results between individual studies, meta-analyses

were referenced when available. In patients with AD,
PD, MCI, and D-US, thinning of the pRNFL has
been seen in all four quadrants, whereas the tempo-
ral and superior quadrants have been the only affected
quadrants in patients with HD. Reduced macular
volume, mGCIPL loss have been demonstrated in
patients with AD, PD, and MCI, but not ALS or
HD. Macular thinning has been identified in patients
with HD, AD, PD, and MCI, but not ALS or D-US.
Although the inner nuclear layer appears to be spared
in patients with PD, it is reduced in patients with ALS.
Choroidal thinning has been found in patients with
AD, HD, and MCI, but not PD. As discussed later,
these and other retinal biomarkers have been shown to
correlate with disease severity and duration.

OCT-A reveals additional information regarding
the retinal vasculature of patients with neurodegener-
ative disease. Decreased microvascular density and an
enlarged foveal avascular zone have been demonstrated
in patients with AD and PD. Reduced branching
complexity has also been associated with AD. Prelimi-
naryOCT-A case-control studies of patients withALS,
HD, or MCI have not found conclusive significant
retinal findings. Fundus imaging case-control studies
have been limited to only AD.

Alzheimer’s Disease

OCT studies have revealed significant retinal
neurodegeneration in patients with AD. A 2018 meta-
analysis20 found thinning in the pRNFL, mGCIPL,
ganglion cell complex, and choroidal layers, as well as
reduced overall macular volume and macular thinning
in the inner and outer sectors. The mGCIPL thinning
has also been shown to correlate with disease severity.14

Various fluorescent fundus imaging modalities have
been used to visualize and quantify retinal AD pathol-
ogy. Intravenous administration of curcumin, a beta-
amyloid-binding fluorophore, revealed that the retinal
beta-amyloid burden is doubled in patients with
AD. Retinal beta-amyloid levels were linked to corti-
cal beta-amyloid burden and reduced hippocampal
volume.23,24 Alternatively, blue autofluorescence has
been used to quantify the surface area of retinal inclu-
sion bodies which correlates with preclinical cortical
beta-amyloid burden.25 Finally, analysis of fluores-
cence lifetime imaging ophthalmoscopy revealed differ-
ences in patients with phakic AD compared tomatched
controls.26

Changes in retinal vasculature have been identified
in fundus images of patients with AD. Fractal dimen-
sion (FD), a quantitative representation of vascular
branching complexity, can be determined by commer-
cially available software or expert analysis. A systematic
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Table 1. Summary of Retinal Image Datasets in Patients With Neurodegenerative Disease

Dataset Feature All Datasets AD PD ALS HD MCI D-US

Access type
Total datasets (n) 154 72 (47%) 53 (34%) 14 (9.1%) 8 (5.2%) 31 (20%) 4 (2.6%)
AoR* (n/total) 149/154 69/72 52/53 13/14 8/8 30/31 4/4
Open access (n/total) 1/154 1/72 0/53 0/14 0/8 1/31 0/4
In article (n/total) 2/154 1/72 0/53 1/14 0/8 0/31 0/4
Account required (n/total) 1/154 0/72 0/53 0/14 0/8 0/31 0/4

Imaging totals
Patients (n, % total) 25,053 19,035 (76%) 2563 (10%) 481 (1.9%) 141 (0.6%) 1039 (4.1%) 1794 (7.2%)
Patient eyes† (n) 49,475 33,794 4858 954 280 1952 3588
Controls (n% total) 10,115 6717 (66%) 2636 (26%) 425 (4.2%) 155 (1.5%) 1520§ (15%) 72§ (0.7%)
Control eyes† (n) 19,661 13,141 4994 850 310 2959 144
Images‡ (n, % total) 70,481 51,902 (74%) 9852 (14%) 2050 (2.9%) 590 (0.8%) 4911 (7.0%) 3588 (5.6%)

Modality
OCT (n/total) 148/154 69/72 53/53 14/14 8/8 30/31 2/4
OCT-A (n/total) 28/154 15/72 10/53 1/14 2/8 7/31 0/4
Fundus (n/total) 11/154 8/72 0/53 0/14 0/8 2/31 3/4

Device manufacturer
Zeiss (n/total) 56/154 27/72 24/53 3/14 0/8 17/31 1/4
Heidelberg (n/total) 54/154 19/72 18/53 9/14 7/8 5/31 0/4
Topcon (n/total) 10/154 5/72 2/53 2/14 0/8 1/31 0/4
Optovue (n/total) 26/154 15/72 7/53 1/14 2/8 5/31 0/4
Canon (n/total) 3/154 2/72 0/53 0/14 0/8 0/31 1/4
Other|| (n/total) 10/154 3/72 3/53 0/14 1/8 4/31 2/4

Region#

North America (n/total) 24/154 15/72 5/53 3/14 0/8 8/31 1/4
South America (n/total) 3/154 1/72 1/53 0/14 1/8 0/31 0/4
Europe (n/total) 66/154 30/72 24/53 7/14 4/8 5/31 0/4
Asia (n/total) 35/154 17/72 11/53 2/14 0/8 14/31 3/4
Middle East (n/total) 25/154 9/72 12/53 2/14 2/8 3/31 0/4
Oceania (n/total) 2/154 1/72 0/53 0/14 1/8 0/31 0/4

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; AoR, available upon request; D-US, dementia, un-specified; HD,
Huntington’s disease; MCI, mild cognitive impairment; OCT, optical coherence tomography; OCT-A, optical coherence tomog-
raphy angiography; PD, Parkinson’s disease.

*If not specifiedwithin the article, datasetswere assumed tobeavailable upon request (AoR) from the correspondingauthor.
†Extrapolated two eyes per case if not specified.
‡Extrapolated one image per eye if not specified.
§In multiple HD and D-US case-control studies, the same controls were used for comparison against other disease types

(AD, PD, and HD) as well. Therefore, these controls are included in each disease type but are not double counted in the total
number of healthy controls.

||Other: Custom system, Nidek, Optos, Opthalmika, SVision, Optopol, Opko.
#North America: United States of America and Canada; South America: Brazil, Argentina; Europe: United Kingdom, Italy,

Germany, Spain, TheNetherlands, Portugal, Belgium, Poland, CzechRepublic, Greece, andSwitzerland; Asia: China, India, South
Korea, Singapore, Taiwan, and Hong Kong; Middle East: Iran, Turkey, and Israel; Oceania: Australia and New Zealand.

review in 2019 found that vascular FD was decreased
in four case-control fundus imaging studies of AD.27
In addition to reduced FD, one study found increased
vessel tortuosity and narrowed venular caliber in
patients with AD, although a separate study yielded
contradictory findings.28,29

Advancements in OCT-A have revealed further
information regarding vascular changes in patients
with AD. A 2021 meta-analysis demonstrated an
enlarged foveal avascular zone and reduced macular
whole enface superficial and deep vessel densities in
patients with AD.19 Notably, features of FD, vessel
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Table 2. Summary of Retinal Findings in Neurodegenerative Disease

Imaging Feature Change Studies (n) Significance Ref

Alzheimer’s disease

Fluorescence studies
Beta-amyloid (curcumin) Increased 2 2/2 with P < 0.05† 23, 24
Inclusion bodies in IPL (blue-AF) Increased 1 P = 0.03 25
FLIO Increased 1 P < 0.05 26

Fundus
Fractal dimension
Arterial Decreased 4 P < 0.049* 27
Venular Decreased 4 P < 0.025* 27

Vessel morphology
Arterial tortuosity Increased/decreased 2 P < 0.001/P = 0.027 28, 29
Venular tortuosity Increased/NS 2 P < 0.001/P = 0.952 28, 29
Venular caliber Narrowed 1 P < 0.001 28

OCT
pRNFL thickness Decreased 24 P < 0.001* 20
Retinal layer thickness
mGCIPL Decreased 6 P = 0.01* 20
mGCC Decreased 4 P < 0.00001* 20
Inner sector of macula Decreased 10 P < 0.001* 20
Outer sector of macula Decreased 10 P < 0.001* 20

Macular volume Decreased 7 P < 0.05* 20
Choroidal thickness Decreased 5 P < 0.001* 20

OCT-A
Microvascular density
Macular whole en face superficial Decreased 9 P < 0.0001* 19
Macular whole en face deep Decreased 9 P = 0.0001* 19
Parafoveal superficial Decreased 6 P = 0.001* 19
Parafoveal deep Decreased 3 P < 0.0001* 19

Foveal avascular zone (FAZ) Enlarged 5 P = 0.07* 19
Parkinson’s disease

OCT
pRNFL thickness Decreased 33 d = -0.42* 17
Retinal layer thickness
mGCIPL Decreased 11 d = -0.40* 17
Inner nuclear layer NS 5 d = -0.01* 17
Outer plexiform layer NS 5 d = 0.11* 17
Fovea thickness Decreased 14 P = 0.000* 18
Inner sector of macula‡ Decreased 8 P < 0.05* 18
Outer sector of macula‡ Decreased 8 P < 0.05* 18

Macular volume Decreased 9 P < 0.05* 18
Choroidal thickness Increased/decreased 2 P < 0.05, P < 0.002 33-34

OCT-A
Microvascular density
Superficial vascular plexus (SVP) Decreased 7 P = 0.002* 22
Foveal SVP Decreased 5 P = 0.62* 22
Parafoveal SVP Decreased 5 P = 0.12* 22
Foveal avascular zone Decreased 5 P = 0.39* 22

Branching complexity
Superficial capillary plexus Decreased 1 P < 0.01 33
Deep capillary plexus Decreased 1 P < 0.05 33

Retinal flow density
Superficial Decreased 1 P < 0.05 35
Deep Decreased 1 P < 0.05 35
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Table 2. Continued

Imaging Feature Change Studies (n) Significance Ref

Amyotrophic lateral sclerosis

OCT
pRNFL thickness NS/decreased 11 P = 0.14*

6/11 with P < 0.05†
12

Retinal layers
mGCIPL NS 9 P = 0.67* 12
Outer plexiform layer NS 6 P = 0.79* 12
Inner nuclear layer Decreased 5 P = 0.00* 12
Outer nuclear layer NS 5 P = 0.16* 12
Macular thickness NS 5 P = 0.58* 12
Whole retinal thickness NS 3 P = 0.11* 12

OCT-A
Retinal microvascular density NS 1 P > 0.05 37

Huntington’s disease

OCT
pRNFL thickness
Temporal region Decreased/NS 8 4/8 with P < 0.005† 41-48
Superior region Decreased/NS 8 2/8 with P < 0.05†

Macular retinal thickness Decreased/NS 8 3/8 with P < 0.05† 41-48
Macular choroidal thickness Decreased 2 P < 0.05† 45-46

OCT-A
Retinal microvascular density NS 2 P > 0.05† 41,46

Mild cognitive impairment

OCT
pRNFL thickness Decreased 17 P = 0.002* 13
Retinal layers
mGCIPL Decreased/NS 9 6/9 with P < 0.05† 13
mGCC Decreased 1 P < 0.05 13

Macular thickness NS/decreased 4 1/4 with P < 0.05† 13
Foveal thickness NS 3 3/3 with P > 0.05† 13
Choroidal thickness Decreased 1 P < 0.05 44
Macular volume NS/decreased 3 1/3 with P < 0.05† 13

OCT-A
Microvascular density
DVP, superior-nasal region Decreased 1 P < 0.05 51
Superficial capillary plexus NS 1 P > 0.05 52

Foveal avascular zone NS 1 P > 0.05 52
Unspecified dementia

OCT
pRNFL thickness Decreased/NS 2 1/2 with P < 0.001† 14, 53
mGCIPL thickness Decreased/NS 2 1/2 with P < 0.003† 14, 53
Macular volume NS 1 P > 0.05 53

AD, Alzheimer’s disease; AF, autofluorescence; ALS, amyotrophic lateral sclerosis; D-US, dementia, unspecified; DVP, deep
vascular plexus; FLIO, fluorescence lifetime imaging ophthalmoscopy; HD, Huntington’s disease; mGCC, macular ganglion
cell complex; mGCIPL, macular ganglion cell layer and inner plexiform layer; NS, not significant, NS, no statistical difference
between cases and controls; pRNFL, peripapillary retinal nerve fiber layer; PD, Parkinson’s disease; MCI, mild cognitive impair-
ment; SVP, superficial venous plexus.

Databases containing fundus images of patients with MCI and D-US did not publish analysis of imaging features.
*Indicates a significance value provided by the referenced meta-analysis.
†Indicates that the P value of the corresponding number of studies fell within the indicated range.
‡Inner and outer macular sectors classified according to Early Treatment Diabetic Retinopathy Study (ETDRS) guidelines.
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caliber, and vessel tortuosity that have been found
on fundus imaging can also be evaluated using OCT-
A, although systematic differences between modalities
have been noted.30

Parkinson’s Disease

In addition to reduced dopamine levels, the retina
of patients with PD also exhibits neurodegeneration.
Meta-analyses of OCT studies in 201917 and 202018
revealed reduced pRNFL, mGCIPL, and macular
thickness, as well as decreased macular volume in
patients with PD. In addition, disease severity and
duration have been shown to be linked with pRNFL
thinning and decreased foveal thickness.31,32 Contra-
dictory findings of both increased and decreased
choroidal thickness have been reported, likely due
to differences in image analysis.33,34 Fundus imaging
studies have revealed that patients with retinal thinning
compared to age-matched controls have an increased
risk of developing PD.35

PD has also demonstrated an impact on retinal
vasculature. A 2023meta-analysis22 found that patients
with PD had reduced microvascular density in the
whole superficial vascular plexus (SVP), foveal SVP,
parafoveal SVP, and foveal avascular zone (FAZ), and
reduced branching complexity has also been impli-
cated.36 Microvascular density, FD, and retinal flow
density have each been used to successfully differentiate
patients with and without PD.37–39

Amyotrophic Lateral Sclerosis

Studies on ALS have produced conflicting results
regarding retinal neurodegeneration. A 2022 meta-
analysis12 found inner nuclear layer thickness to be
the only statistically significant finding in patients with
ALS. However, 6 of the 11 studies within the analysis
also demonstrated significant pRNFL thinning. Future
studies with differentiation between ALS subtypes
(bulbar-onset versus spinal-onset) may help clarify the
conflicting results.12 In the only found OCT-A study
assessing patients with ALS, retinal microvessel density
was not significantly decreased in patients with ALS
compared to controls.40

Huntington’s Disease

OCT case-control studies of patients with HD have
produced conflicting results. Temporal pRNFL deteri-
oration and reduced macular retinal and choroidal
thickness have been demonstrated in patients with
HD, but other studies found no significant differ-
ence.41–48 One study found that temporal pRNFL

thinning appeared in preclinical HD, whereas another
could not replicate the finding.44,48 Disease duration
and severity may be correlated with temporal pRNFL
thinning and reduced macular volume.42 Two studies
using OCT-A found no difference in vessel density.41,46
A total of 115 patients with HD have been studied,
suggesting that larger sample sizes may assist in ascer-
taining the retinal characteristics of HD.

Unspecified Dementia and Mild Cognitive
Impairment

Patients with MCI have demonstrated retinal
changes. A 2020 meta-analysis13 discovered pRNFL
thinning across 17 studies. OCT case-control compar-
isons have also demonstrated decreased mGCIPL,
ganglion cell complex, macular, foveal, and choroidal
thickness, and reduced macular volume, although all
studies did not share the same findings. GCIPL thick-
ness,49 choroidal thickness,50 pRNFL thickness,51–53
and the pRNFL granular membrane area54 have been
shown to be inversely correlated with cognitive perfor-
mance, whereas other studies show no correlation.55
Decreased mGCIPL thickness has also been corre-
lated with a reduction of white matter in the fornix
of patients with MCI.56 An OCT-A study discovered
reduced microvascular density in the superior-nasal
region of patients withMCI, but another study did not
find any differences.57,58

Few studies have investigated the relationship
between the retina and unspecified dementia. Ferrari
et al.14 found pRNFL thinning and GCIPL loss,
with GCIPL loss being connected with AD severity.
On the other hand, Pillai et al.59 found no statisti-
cal significance in RNFL thickness, GCIPL thickness,
or macular volume between patients with unspecified
dementia and healthy controls. Further studies will
help explore the impact of unspecified dementia on the
retina.

Strategies Used for Retinal Image
Analysis in Patients With
Neurodegenerative Disease

As discussed above, recent studies have elucidated
various features found in retinal imaging that are
associated with neurodegenerative diseases. On the
other hand, several studies have used machine learn-
ing models to detect or otherwise learn more about
these diseases using retinal images alone, without
any a priori knowledge.Table 3 provides an overview
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of studies using deep learning algorithms and other
predictive models for retinal image analysis in neurode-
generative disease, whereas Supplementary Table S2
contains additional details for each model. Deep learn-
ing models can detect features from unstructured data
to make predictions using that data, with no guidance
apart from data examples. The most prevalent deep
learning algorithm for image analysis is known as the
convolution neural network (CNN). In retinal images
of patients with neurodegenerative disease, some of
the features learned by CNN models might be features
already described in the scientific literature. Some may
be observable features that have not yet been described,
and others may be features that are even too subtle
for a human observer to detect. CNNs have shown
great promise for automating decision-making tasks
using retinal images in patients with neurodegenerative
disease.

An excellent review recently detailed the compu-
tational strategies for using CNNs for retinal image
analysis in general, which are applicable to the current
discussion. The authors outlined the following stepwise
elements in the overall framework for implementing a
deep learning model for retinal image analysis. These
include: (1) image acquisition and annotation, (2)
retinal image preprocessing, (3) model architecture and
design, (4) model training, (5) generatingmodel predic-
tions, and (6) evaluating model performance.60 For a
more detailed explanation of these stages, we refer
the reader to this other review.60 In the current work,
we will discuss specific architectural elements as they
pertain to the problem of retinal image analysis for
neurodegenerative disease, and their past and future
applications.

CNNModels: Basic Architectures and
Applications

The architecture of a neural network refers to
the arrangement of computational steps, which are
known as layers. CNNs share a basic unit, the convo-
lution layer, which is used to extract information from
images. Computations in convolutional layers are fed
forward in series to other types of computational layers
including pooling and fully connected (FC) layers, and
also other downstream convolution layers. The most
common types of computational tasks performed by
CNNs are classification, regression, and segmentation.
The architecture of VGGNet, a common CNN used
for retinal image analysis, is shown in Figure 2.

Classification
The structure of a basic CNN for the task of

image classification usually involves several repeated

units which consist of one or more convolution layers
followed by a pooling layer. With each iteration of
units, the resolution of the output decreases. Feed-
forward skip connections are used throughout to
preserve important spatial data from earlier steps.
Finally, an FC layer is used to transform the spatial
image data into a structured classification output.
Classificationmodels have been themost common type
of CNN among publications on retinal image analy-
sis in the context of neurodegeneration. Accuracy and
area under the receiver operator curve (AUC) are the
most popular methods for measuring the performance
of these models, but binary accuracy, sensitivity, and
specificity are also used.

Disease detection is the most basic classification
task; many different models have been constructed
to take images of a fundus as input and provide
as output a binary label distinguishing whether the
image is from a patient with a neurodegenerative
disease or from a healthy control. Attempts at detect-
ing AD, PD, and general cognitive impairment using
fundus photographs have been described previously,
with varied results. CNN models trained on large
fundus datasets have demonstrated improved perfor-
mance compared to models trained on small datasets.
For example, a model trained on nearly 13,000 images
had an AUC of 0.91,61 whereas a model trained on
less than 300 images had an AUC of 0.83.62 Ongoing
work is being done to engineer these models to improve
their diagnostic accuracy. Multi-class disease detection
models have also been constructed. These aim to detect
one of several potential disease states; for example, one
study used support vector machines (a different type of
machine learning model) to classify patients as having
AD, PD, or neither.63 Classification is not limited to the
diagnosis of disease and may involve multiple classes
representing any variable of interest. For example, one
study devised a method for classifying the localization
of age-relatedwhitematter changes to one of six overall
brain regions using bilateral fundus photos fed to a
CNN, followed by a regression and decision tree for
brain region classification.64 This approach was able
to classify the location of white matter lesions into
one of 6 potential regions: left and right frontal lobes,
parietal–occipital lobes, or basal ganglia using fundus
photographs, with an AUC of 0.955 based on 10-fold
cross-validation.

Risk stratification is another classification task
which involves labeling imaging as belonging to one
or two groups of varying risk. Many such studies
have attempted to predict the presence of a known
risk marker. For example, one model was trained to
detect the ApoE4 genotype using fundus photographs.
However, this model was unsuccessful with an AUC of
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Figure 2. Architecture of VGGNet. Used with permission from Goutam et al. 2022.60 CONV, a conversion of the convolutional neural
network; FC, fully connected layer; ReLU, rectified linear unit.

0.47, which may have been due to the low representa-
tion of ApoE4 individuals in the dataset, the model
structure itself (although the model had good perfor-
mance on age and sex predictions), or alternatively
the inability of fundus photography as a modality to
capture information about retinal amyloid deposits.65

Regression
A very similar type of CNN model can perform

a regression task using image inputs. Regression
models have the same general framework as classi-
fication models, except for the final computational
layer. In a regression model, the final layer outputs
a numeric variable (rather than categorical variables
used in classification). The correlation value R is
most commonly used to describe what percent of the
variability in the dependent variable can be explained
by the model.

For instance, one model attempted to predict cogni-
tive scores in a cohort of aging adults, although the
model was only able to explain 22% of cognitive scores
(R = 0.22).65 Another study with a similar objective
of predicting the Cardiovascular Risk Factors, Aging,
and Incidence of Dementia (CAIDE) yielded a more
useful model, with R = 0.76 on an external validation

set and an AUC of 0.926 for the detection of high
dementia risk defined as a score >10.66 One of the
more striking successful examples of regression using
CNNs is the estimation of a person’s age using a fundus
photograph, a biomarker that is known as retinal age,
with R = 0.81 in one study.67,68 Other potential appli-
cations of regression are hazard and time-risk models.
For instance, one model used the retinal age gap (the
difference between retinal age and true age) and other
demographic data as input into a Cox proportional
hazards model to estimate the 5-year incidence of
PD.35

Segmentation and Object Detection
Image segmentation is a different kind of task that

uses a very different model architecture. The purpose
of a segmentation algorithm is to use an input image
to create a segmentation map, which is an image
highlighting every pixel from the input image that
is associated with a structure of interest. Similar to
other CNN models, segmentation models use blocks
of convolutional and pooling layers. In a segmentation
model, intermediate convolution layersmay scale down
the resolution of the image data, but up-convolution
layers are used to increase the output resolution (back
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to the original resolution in many cases). Feed-forward
skip connections are used to preserve important spatial
data from the higher-resolution steps to create the
segmentation map.

Segmentation of the retinal vessels is one of the
most important examples of this type of algorithm,
as the vascular anatomy contains valuable informa-
tion regarding the neurodegenerative disease, as noted
above. However, segmentation of retinal vessels has
also been described as one of the most challenging
tasks in retinal image processing.69 Several segmenta-
tion algorithms have been developed over the past few
years with the objective of generating images of the
retinal vascular tree from fundus images, with all other
details removed from the image. A vascular segmenta-
tion algorithm for OCT-A images has also been devel-
oped recently.70 In practice, these models can be used
to extract from the original image an image of white
vessels only on a black background (or vice-versa).
Many studies have used pre-existing vessel segmenta-
tion algorithms to process input images and use the
resulting vessel map alongside the original image as a
second input to a classification or regression model.
A standardized method has recently been described
for evaluating and comparing the accuracy of vessel
maps.Using thismethod, a per-pixel (vessel or no vessel
present in this pixel) AUC can be calculated by averag-
ing over every pixel in an entire image set.70

Object detection shares some similarities with
segmentation but also has some elements of a classifi-
cationmodel. These algorithms can detect and quantify
one or more features in a fundus photograph. For
example, the automated retinal image analysis (ARIA)
algorithm has been used to detect and count arteriole-
venous nicking, arteriole occlusions, hemorrhages, and
exudates,64 and these results can be used as input
features in a model.

Architectural Modifications and Other Tools
for Increasing Model Performance

Presently, most studies using retinal images of
patients with neurodegenerative disease have been
relatively small in size (in the tens to hundreds of data
examples) compared with datasets more commonly
used for commercial deep learning applications (often
in the thousands to over a million data examples).
Ample large-scale datasets exist for diseases such
as diabetic retinopathy or glaucoma, but there is a
scarcity of available retinal image data for patients with
neurodegenerative disease. There are some moderately
sized datasets for AD and several small datasets that
could potentially be pooled. However, sizable retinal

image datasets from patients with other common
neurodegenerative diseases with lower prevalence like
ALS, HD, or frontotemporal dementia are greatly
lacking.

The term “Hand-engineering” refers to the use of
a priori knowledge to intentionally construct a model
with specific elements to increase its likelihood of
recognizing features that are already known to be
important in the task to be automated. Hand engineer-
ing a model by incorporating various deep learning
tools into the model architecture can increase the
predictive power of CNN models, especially for small
datasets, although these methods can also increase the
accuracy of models trained on large datasets as well.

In this section, we discuss a few of the most impor-
tant deep learning tools currently available to allow
for the harnessing of a priori knowledge, or otherwise
increase the power of models used to analyze retinal
images from patients with neurodegenerative disease.

Image Preprocessing and Feature Extraction
One of the simplest means of hand engineering

can be preprocessing data to enhance specific features.
Different combinations of image color, contrast, noise,
or sharpness modifications have proven helpful for
improving the visualization of darker vessels, the
brighter optic nerve head, or retinal background
lesions, for example.60 In small datasets inwhich images
from only one eye are input at a time, it can be helpful
to horizontally flip all images of left eyes to match the
right eyes to increase dataset homogeneity.

Increasing the size of a dataset, known as data
augmentation, can also improve model performance.
For image datasets, this is commonly done using image
transformations. The addition of randomly flipped,
rotated, cropped, zoomed, or blurred copies of existing
images in the dataset can improve model performance.
Non-random cropping can also be useful, to focus on
certain regions of interest, such as the optic nerve head
or macula.60

Pre-existing deep learning algorithms can also
be used to transform an image during prepro-
cessing. Several powerful retinal vessel segmentation
algorithms have been developed recently. These tools
have the ability to generate segmentation maps isolat-
ing the arteries, veins, or both.69 Other segmenta-
tion algorithms can detect and create labeled maps
of pathologic features including hemorrhages, microa-
neurysms, exudates, or retinal neovascularization.71
These algorithms were specifically developed with the
small-dataset problem in mind. Even a small-scale
model can obtain key lesion information reliably if
the inputted images are preprocessed by a pre-existing
model that can detect these lesions accurately.
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Segmentation algorithms can also be used in the
preprocessing of OCT images to identify the various
retinal layers or create maps of their spatial thickness
distribution. For example, segmentation of OCT layers
can be used to generate several 2D maps of the thick-
ness of each retinal layer, which can be used as input
into a CNN. This is important feature information,
given the known association between neurodegenera-
tive disease and retinal layer thinning.

Feature extraction is the practice of using compu-
tations on original input data, which may include pre-
existing neural network models, but also simpler calcu-
lations, to extract desired data features. This can be
done with pretrained CNNs specialized for extract-
ing a specific type of feature of interest (i.e. vascu-
lar information). For example, retina-based microvas-
cular health assessment system (RMHAS) is an
algorithm that can extract the following features from
a retinal image: average vessel diameter, average vessel
length, fractal dimension, branching angles, tortuos-
ity, branching coefficient, asymmetry ratio, junctional
exponent deviation, and angular asymmetry.72 Several
other models are available for extracting various
quantitative features from retinal images. The extracted
feature data can then be used as input to a model.
Occasionally, when features of interest are unknown,
feature extraction can be done using the pretrained
weights from early layers of a general image classifier
(such as ImageNet), although the outputs from this
form of feature extraction are difficult to correlate with
any physiological characteristics.

One potential pitfall of both preprocessing and
feature extraction is the loss of data due to the trans-
formation of the original image data. For example,
cropping to focus on the optic disk would result in a
loss of data for the entire rest of the fundus. Likewise,
inputting only segmented images of the vascular tree
would neglect the rest of the retinal background. In
addition, by the same token, inputting only structured
data obtained from feature extraction would neglect
any other features potentially contained in the image.
For larger datasets, it is usually best to use the original
images as parallel inputs together with the preprocessed
images to avoid the loss of features within the origi-
nal image, although for smaller datasets this may not
negatively impactmodel performance. Themethods for
merging parallel inputs, known as feature fusion, will
be discussed in another section below.

Transfer Learning
In the previous section, we discussed how the use

of pre-existing models can be a powerful tool when
hand-engineering a model. This is also true for train-
ing the model itself. The task of basic recognition of

curves, outlines, and shapes is not trivial and must be
learned by a naive model. Rather than training a naive
model, the more common practice is to begin with a
pretrained network, load its learned weights, and then
fine-tune the weights of a few final layers during the
specialized training for the specific task at hand. Impor-
tantly, the use of transfer learning was shown to yield
better results compared with naive model training for
predicting systemic information using retinal images,
even for naive models trained on very large datasets.73
Examples of common pretrained CNNmodels include
ResNet (Microsoft), VGGNet (Oxford), ImageNet
(ImageNet), EfficientNet (Google), and GoogLeNet/
Inception (Google).

Using pretrained networks can be problematic,
however. Pretrained CNNs tend to favor features that
were important for classifying images from their origi-
nal training datasets. For example, many pretrained
CNNs are known to favor texture features over
shape features.74 Although texture, or local patterns
distributed over a small area, seems to be very impor-
tant for neurodegenerative disease classification,75 it
may be a pitfall to neglect key shape information,
which is associated with objects across a larger area
in the image. One solution to this problem is the use
of pretrained networks that prioritize shape, such as
Stylized-ImageNet, which used different training data
to intentionally emphasize shape features over texture.

Feature Fusion
Feature fusion is themerging of features fromdiffer-

ent branches or different layers in a model so that
the model will consider them together in one or more
computational steps. Commonly, this is accomplished
by simple concatenation (appending) or summation
(adding). Feature fusion can be used to combine paral-
lel branches (i.e. fuse patient metadata with a fundus
image) or within elements (i.e. between convolution
layers downstream of a single input image).

One important application of feature fusion to
the current discussion is the simultaneous consider-
ation of bilateral fundus images. It seems particu-
larly important to consider data from both eyes when
using fundus images to predict extraocular disease
states, such as neurodegenerative disease. Several recent
studies have described various strategies of feature
fusion for the analysis of bilateral fundus images.
Recently, a powerful model using feature fusion of
bilateral fundus images achieved >99% precision and
>99% recall classifying 8 different disease classes,
including systemic diseases like diabetes and hyperten-
sion using retinal images from the ODIR dataset (n =
5000).76
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Figure 3. Simple approach for combining fundoscopic image processing andmetadata processing. Adaptedwith permission fromGessert
et Al. 2020.77 CONV, a conversion of the convolutional neural network; FC, fully connected layer; ReLU, rectified linear unit.

Figure 4. Example of attention maps used in the classification of diabetic retinopathy. Pixels in the image that are of higher relevance to
model decision making are highlighted in yellow and red. Adapted with permission from Zhang et al. 2022.81

Another possibility with feature fusion is the paral-
lel use of metadata which may include demographic
information, like sex, age, ApoE genotype, cardio-
vascular laboratory markers, or potentially any infor-
mation from the medical history. These data seem
especially important for giving systemic contextual
information and has proven useful in several models.
For example, the use of metadata fused with imaging
by simple concatenation improved the accuracy of

skin cancer classification using dermoscopy images
(see Figure 3).77 Similarly, the detection of anemia
using fundus imaging together with metadata was
significantly more accurate compared to either
alone.78

Attention Mechanism for CNNs
The attention mechanism is a deep learning tool

that was first developed in language models, giving
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them the ability to maintain attention to key parts of a
sentence that were closely linked either grammatically
or semantically despite being distant from one another
(many words apart within a sentence or paragraph).
For CNNs, the mechanism of spatial attention is the
ability to give more weight to certain regions of the
input image and less to others, despite being distant
from one another, and the attention function is learn-
able by the model during training rather than hard-
coded.

A new method for incorporating attention into
feature fusion has been described recently.79 Atten-
tional feature fusion allows a model the ability to
preferentially give attention to different features rather
than giving equal attention to different features, which
is the result of simple methods like concatenation and
summation.

Class Activation Mapping: Shedding Light on Influen-
tial Features

A major drawback to the use of deep neural
networks for image analysis has been their black-
box nature, or, in other words, their inability to
explain their decision-making processes. Class activa-
tion mapping (CAM) is a method of highlighting the
key features either in the original image or in any
of the convolutional layers that are most influential
in a model’s decision and can be used for classifi-
cation and segmentation tasks. This is a method of
inspecting a convolution layer’s implicit attention by
displaying a map of the relative weights for each pixel.
Self-Attention class activation maps SA-CAM80 have
recently been described as a new method by which
spatial attention maps can be visualized, which is
useful for displaying explicit rather than implicit model
attention.

The benefit of using CAM is that it may help
find meaningful clinical correlations of model behav-
ior. In diabetic retinopathy models, attention maps
have shown model attention to lesions known to be
important for Early Treatment Diabetic Retinopathy
Study (ETDRS) classification of diabetic retinopathy,
such asmicroaneurysms and hemorrhages (Figure 4).81
There is currently no known classification system
for neurodegenerative disease based on retinal image
findings. However, CAM in a model for the detec-
tion of symptomatic AD showed that the model gave
attention to areas of decreased vessel density in the
fovea and temporal macula in images classified as
positive for AD.62 Making sense of the features used
by CNNs in their decision making will be impor-
tant for linking model predictions with physiologic
features.

Discussion

In the recent literature, a variety of studies have
demonstrated that retinal image analysis using deep
learning can provide highly useful predictions regard-
ing neurodegenerative disease diagnosis and risk
assessment with good accuracy. Using retinal fundus
photographs and/or OCT images, convolutional neural
network algorithms have performed impressive tasks
such as automated diagnosis of AD and PD, calcula-
tion of risk of future PD or dementia, and localization
of cerebral white matter disease.

Recent advances in deep learning should be consid-
ered in the development of future models. For retinal
image analysis in general, transfer learning, or the
use of a convolutional neural network with pretrained
weights, seems to be superior to training a model
with naive weights, even when a large fundus image
dataset is available for training. New advances, such as
attentional feature fusion, will also allow for improved
ability for researchers to understand model decision
making. Ongoing development of feature extraction
algorithms is enabling the generation of improved
maps of lesions and vasculature, as well as the gener-
ation of structured feature information such as retinal
age or whole-fundus vessel caliber. However, the use
of extracted feature information together with origi-
nal images yields better results than extracted features
alone.

Because the performance and generalizability of
convolutional neural network models tend to improve
as more images are used during training, the predictive
power of future models is expected to increase as more
retinal image data becomes available in patients with
neurodegenerative disease. Several existing datasets
are available and contain various imaging modalities
primarily in patients with AD, although dataset size
for most of these is on the order of tens to a few
hundred. There is very little image data available for
PD, HD, ALS, or other neurodegenerative diseases.
At present, although cross-sectional imaging data is
becoming more abundant, datasets with longitudinal
imaging are altogether lacking. Furthermore, the use
of bilateral and multimodal imaging together with
metadata seems to improve model performance, thus
larger multimodal datasets with patient metadata and
bilateral images are also needed.

Thus far, a broad range of device manufacturers
have been represented in datasets. It could certainly
be a pitfall to deploy a machine learning model to
interpret images acquired using devices different from
those used formodel training. This could lead to unpre-
dictable model behavior. However, using images from
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different devices and manufacturers together in the
same training set would not be expected to detract
from the rigor of a model as long as the images in
the test dataset were acquired using one of the devices
used for training. In fact, a model trained using images
from several different devices ormanufacturing systems
could have better generalizability than a model trained
on images from a single device.

Although deep learning can potentially be a power-
ful tool for neurodegenerative disease, virtually all
models in the current literature share a similar limita-
tion. Features such as retinal thinning are highly
nonspecific and could represent a variety of patholo-
gies, such as glaucoma, diabetes, or other inflamma-
tory retinopathies. In addition, whereas many reports
have claimed to detect neurodegenerative diseases with
high specificity and sensitivity, most of these datasets
are poorly representative of a realistic clinical popula-
tion. It will be important for future models to use
more diverse datasets that do not exclude disease
with ocular manifestations and re-evaluate whether
these models can identify features differentiating true
neurodegenerative disease from other diseases with
retinal implications. Given these limitations, it remains
uncertain whether automated retinal image analysis
using machine learning algorithms will be useful for
the diagnosis of neurodegenerative disease in clinical
practice.
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