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Purpose:Orthokeratology (ortho-K) is widely used to control myopia. Overnight ortho-
K lens fitting with the selection of appropriate parameters is an important technique for
achieving successful reductions in myopic refractive error. In this study, we developed a
machine-learning model that could select ortho-K lens parameters at an expert level.

Methods: Machine-learning models were established to predict the optimal ortho-K
parameters, including toric lens option (toric or non-toric), overall diameter (OAD; 10.5
or 11.0 mm), base curve (BC), return zone depth (RZD), landing zone angle (LZA), and
lens sagittal depth (LensSag). The analysis included 547 eyes of 297 Korean adolescents
with myopia or astigmatism. The dataset was randomly divided into training (80%, n =
437 eyes) and validation (20%, n = 110 eyes) sets at the patient level. The model was
trained based on clinical ortho-K lens fitting performed by highly experienced experts
and ophthalmic measurements.

Results: The final machine-learning models showed accuracies of 92.7% and 86.4% for
predicting the toric lens option and OAD, respectively. Themean absolute errors for the
BC, RZD, LZA, and LensSag predictions were 0.052 mm, 2.727 μm, 0.118°, and 5.215 μm,
respectively. The machine-learning model outperformed the manufacturer’s conven-
tional initial lens selector in predicting BC and RZD.

Conclusions:We developed an expert-level machine-learning–based model for deter-
mining comprehensive ortho-K lens parameters. We also created a web-based applica-
tion.

Translational Relevance: This model may providemore accurate fitting parameters for
lenses than those of conventional calculations, thus reducing the need to rely on trial
and error.

Introduction

Orthokeratology (ortho-K) has proven effective in
slowing the progression of myopia in children and
adolescents.1 It is a non-invasive method that does
not require surgery or drugs, and good eyesight
can be maintained without the wearing of optical
devices such as glasses or contact lenses.2 However,
customizing ortho-K lenses to suit individual patients’
needs can be challenging depending on the practi-
tioner’s proficiency. The accurate selection of lens

parameters is crucial for effective myopia correction,
comfortable lens wear, and prevention of side effects.3
Traditional ortho-K fitting methods often overlook
individual ophthalmologic information and rely on
a trial-and-error approach. This process can be time
consuming and may necessitate multiple visits to the
practitioner’s office, resulting in reduced efficiency and
a poor treatment experience for the patient.4

Traditionally, most of the initial ortho-K lens
parameters are determined using a simple nomogram-
based initial lens selector (ILS) provided by the
manufacturer.5 The ILS uses manifest refraction and
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keratometry values to guide parameter selection.
However, it is crucial for practitioners to consider
various factors such as refractive errors, corneal shape,
and the patient’s comfort in depth.6 Prescribing a lens
that does not properly fit the patient’s cornea can lead
to side effects such as reduced visual acuity, abnor-
mal corneal fluorescent staining, or corneal erosion. To
address these problems, follow-up interventions may
be required, involving changes in the lens parame-
ters and types and adjustments to the wearing sched-
ule. If the initial diagnostic lens (the first fitted test
lens), selected according to the manufacturer’s recom-
mendations, proves unsuitable during the evaluation
process, a new lens should be ordered, and the fitting
and evaluation processes should be repeated. There-
fore, proper lens parameter selection is important to
minimize the potential risk of side effects and allevi-
ate the burden on patients in terms of time and
effort.

Recently, artificial intelligence–based approaches
have been used to learn from expert clinical decisions
in the medical field.7 Machine learning is a field of
artificial intelligence that involves training models to
map data.8,9 In the field of ortho-K, machine-learning
techniques have also been employed. For example, a
study utilized machine learning to predict the return
zone depth (RZD) and landing zone angle (LZA),
which are two factors associated with corneal refractive
therapy (CRT) ortho-K lens (Paragon Vision Sciences,
Gilbert, AZ).10 However, there are other crucial ortho-
K lens parameters, such as the toric option, overall
diameter (OAD), and base curve (BC).

To select the optimal ortho-K lens parameters based
on optical and clinical measurements, we developed
an expert-level decision support system to recommend
CRT ortho-K lens parameters using machine learning.
Specifically, we constructed a comprehensive predic-
tion model that encompasses selection of the parame-
ters, including the toric option, OAD, BC, RZD, LZA,
and lens sagittal depth (LensSag), thereby providing
a comprehensive support tool. The machine-learning
model was trained based on the clinical decisions of
highly experienced experts. We also developed a web-
based application for practical implementation.

Methods

Study Design

This retrospective study included 547 eyes of 297
Korean patients who had visited the B&VIIT Eye
Center (Seoul, South Korea) between June 2020 and
October 2022 formyopia treatment with ortho-K.Only

patients 7 to 20 years old were included, and those
with ophthalmic diseases or a history of ophthalmic
surgery were excluded. We retrospectively reviewed the
patients’ charts to collect final lens-fitting information.
The initial ophthalmological examination data before
the wearing of the lens were collected and used. This
study was approved by the institutional review board
of the Korean National Institute for Bioethics Policy
(No. 2022-1554-002). This study adhered to the tenets
of the Declaration of Helsinki.

Data Collection

Lens fittings were performed by two Korean board-
certified ophthalmologists (WKK and YKP) with
an average experience of 10 years in ortho-K. All
eyes were initially fitted using CRT lenses with ILS
(Supplementary Fig. S1), and clinical evaluations
were performed using corneal fluorescent staining
and manifest refraction during the follow-up periods.
After evaluation of lens fitting during the follow-up
observation periods, ortho-K lens parameters were
adjusted if necessary. Ortho-K lens parameters that
were confirmed to be stable for more than 6 months
were determined as the final prescription results. In
this study, the first-visit data before treatment and
the final ortho-K lens parameter data of patients
with stable lens fitting were analyzed. All of the
patients underwent pretreatment corrected distance
visual acuity measurements, autorefraction, autoker-
atometry, manifest refraction, and slit-lamp examina-
tions. Central corneal thickness (CCT) and anterior
chamber depth (ACD) were measured using an AL-
Scan device (NIDEK, Gamagori, Japan). In this study,
ACD was defined as the distance from the corneal
surface to the front of the crystalline lens. The Kerato-
graph 4 (OCULUS, Wetzlar, Germany) was used to
measure the corneal topography. We extracted the
white-to-white (WTW) and corneal eccentricity values,
including flat e (horizontal e), steep e (vertical e), and
mean e, from the corneal topography images (Supple-
mentary Fig. S2).

We used anonymized medical records and ocular
measurement data to train and validate the machine-
learning algorithms. The input features included
various parameters such as age, spherical and cylindri-
cal powers of autorefraction (AR Sph and AR Cyl,
respectively), and manifest refraction (MR Sph and
MR Cyl, respectively), as well as flattest and steepest
keratometry (K1 and K2, respectively), mean keratom-
etry, keratometry astigmatism, WTW, e value, flat e
value, steep e value, axial length, CCT, and ACD. The
prediction targets in this study were the toric options,
OAD, BC, RZD1 (primary return zone depth), RZD2
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Figure 1. Parameters of ortho-K lens fitting. The parameters include toric lens option (toric or non-toric), OAD (10.5 mm or 11.0 mm), BC,
RZD, LZA, and LensSag.

(return zone depth for the additional astigmatism axis
in toric lenses), LZA, and LensSag, as shown in
Figure 1.

Considering the characteristics of each parameter
and dataset, we approached the prediction tasks differ-
ently. The toric options and OAD were treated as
binary classification problems because of their distinct
categories. The toric options encompassed the choices
of toric (CRT dual-axis) or non-toric (CRT) lenses. As
for the OAD, although OADs in CRTs are manufac-
tured in units of 0.5 mm, in the Korean context the
prevalent choices are limited to 10.5 mm and 11.0
mm. Hence, predicting the OAD involves a binary
classification task that considers the two available
options. On the other hand, the prediction tasks of
the continuous values of BC, RZD1, RZD2, LZA, and
LensSag were considered as regression problems, and
machine-learning models were developed using regres-
sion algorithms.

Datasets

Figure 2 shows the datamanagement workflow used
in this study. Initially, 585 eyes were included. Among
theKorean patients, 38 eyes were excluded because of a
history of ocular surgery, corneal diseases, or missing
values. The final dataset consisted of 547 eyes of 297
Korean patients. The training and test datasets were
randomly split at the patient level to avoid inter-eye
correlations. We assigned 80% of the Korean patient
data to the training dataset (N = 437 eyes), and 20% of
the patient data (N= 110 eyes) were used as the internal
validation (test) dataset. During the training process,

we performed fivefold cross-validation to assess the
performance of and optimize the prediction models.
We tuned the hyperparameters of the algorithms via
fivefold cross-validation to avoid overfitting.

Machine-Learning Methods

The machine-learning algorithms used to solve
the binary classification problems (toric option and
OAD) were CatBoost, Extra Trees, XGBoost, and
random forest. The remaining regression models
(BC, RZD1, RZD2, and LZA) used least-angle
regression, Ridge, Lasso, CatBoost, random forest,
XGBoost, and Extra Trees regressors. Decision-tree–
based algorithms, including CatBoost, Extra Trees,
XGBoost, and random forest, have been recognized as
robust and powerful nonlinear mapping functions in
various fields.11,12 Least-angle regression, Ridge, and
Lasso are robust regression methods based on linear
regressors and have been widely used for prediction
tasks in the medical field.13,14 To search for the optimal
hyperparameters for each machine-learning algorithm,
we adopted a grid search (Cartesian method), in which
various tunable parameter values were tested via the
fivefold cross-validation. We calculated the importance
of permutation features in the trained models to deter-
mine the impact of each input feature. Based on the
feature importance, a partial dependence plot was used
to visualize the variable interaction effects.15 It should
be noted that the input and output data were not
normalized before training the models for real-world
inference. Additionally, tree-based algorithms were not
affected by data normalization due to the rule-based
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Figure 2. Data management workflow used for the development and validation of machine-learning models to predict the optimal
ortho-K lens parameters.

characteristics of each variable. We also developed
a web-based hands-on application for this task. The
scikit-learn Python library was used to develop the
algorithms.16

Statistical Analysis

In the binary classification tasks, metrics includ-
ing accuracy, precision, recall, and F1 were calcu-
lated between the achieved and predicted parame-
ters. To evaluate the prediction performance of the
regression tasks, we compared the mean absolute error
(MAE), root mean square error (RMSE), and R2 (the
coefficient of determination) between the achieved and
predicted parameters. All statistical comparisons were
performed using a paired t-test with the significance
level set at P < 0.05. The lens fitting prediction values
of the developed models and ILS were compared with

the final prescription results. For fair comparisons with
ILS, the output values of the models were rounded to
the same units as ILS, with BC set to 0.1 mm, LZA
set to 1.0°, and RZD1 and RZD2 set to 25 μm before
performance evaluation.

Results

The initial measurements of the participants in the
dataset are listed in Table 1. The final ortho-K lens
parameters obtained after completing the lens fitting
process are listed in Table 2. Of the 297 patients, 121
were male and 176 were female. Among the 547 eyes
analyzed, an OAD of 10.5 mm was prescribed for 368
eyes and an OAD of 11.0 mm was prescribed for 179
eyes.
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Table 1. Demographics and Baseline Ocular Biometric
Data of the Study Participants

Variables Mean ± SD
Range

(Lower, Upper)

Age (y) 10.00 ± 2.21 7.00, 20.00
MR Sph (D) −2.13 ± 1.13 −6.00, 0.25
MR Cyl (D) −0.50 ± 0.50 −3.25, 0.00
AR Sph (D) −2.42 ± 1.21 −6.25, 0.00
AR Cyl (D) −0.79 ± 0.54 −3.25, 0.00
K1 (D) 42.75 ± 1.24 39.25, 47.00
K2 (D) 43.99 ± 1.35 40.00, 47.75
Mean keratometry (D) 43.35 ± 1.27 39.75, 47.25
Keratometry astigmatism (D) 1.25 ± 0.52 0.00, 3.00
WTW (mm) 11.78 ± 0.35 10.90, 12.80
Mean eccentricity 0.59 ± 0.10 0.22, 0.86
Flat eccentricity 0.59 ± 0.08 0.36, 0.86
Steep eccentricity 0.58 ± 0.16 −0.10, 0.97
Axial length (mm) 24.62 ± 0.85 22.64, 27.32
CCT (μm) 555.50 ± 31.86 464.00, 669.00
ACD (mm)a 3.86 ± 0.20 3.07, 4.43

aACD includes corneal thickness as the distance from the
anterior corneal surface to the front of the crystalline lens.

Table 2. Final Orthokeratology Lens ParametersDeter-
mined by Expert Ophthalmologists

Variables Mean ± SD Range (Lower, Upper)

OAD (mm) 10.66 ± 0.23 10.50, 11.00
BC (mm) 8.58 ± 3.63 7.7, 9.8
RZD1 (μm) 531.76 ± 16.01 500, 575
RZD2 (μm) 540.49 ± 25.65 500, 625
LZA (°) 32.81 ± 0.75 30, 35
LensSag (μm) 1074.16 ± 28.96 986, 1183

The fivefold cross-validation results for the binary
classification problems (toric option and OAD predic-
tion) in the training dataset are shown in Figure 3.
Extensive performance data are presented in Supple-
mentary Table S1. Toric prediction determines whether
an astigmatic lens (CRT dual-axis) is required. In this
task, among the classifiers evaluated, the CatBoost
classifier demonstrated the best performance, achiev-
ing accuracy, precision, recall, and F1 scores of 0.940,
0.941, 0.940, and 0.940, respectively. In addition, for
the OAD classification model, the Extra Trees classi-
fier outperformed the others, achieving accuracy, preci-
sion, recall, and F1 scores of 0.872, 0.895, 0.872, and
0.875, respectively.

As shown in Figure 4, these algorithms exhib-
ited similar performance on the test dataset. The
detailed metrics are listed in Table 3. Performance

was evaluated using a test set containing 110 eyes,
and the CatBoost classifier showed an accuracy of
0.927, precision of 0.931, recall of 0.927, and F1 of
0.929. In the confusion matrix, 86 of the 91 cases in
which the final lens was non-toric (CRT) in the test
dataset, and 16 of the 19 cases in which the final
lens was CRT dual-axis (toric) were correctly classi-
fied. For the OAD classification in the test dataset,
the Extra Trees classifier showed accuracy, preci-
sion, recall, and F1 scores of 0.864, 0.868, 0.864,
and 0.865, respectively. The receiver operating charac-
teristic (ROC) curves for the binary classification
problems are shown in Supplementary Figure S3.
The area under the ROC curves showed 0.970 and
0.920 for the toric option and OAD prediction tasks,
respectively.

Figure 5 presents the performance of the regression
tasks (BC, RZD1, RZD2, and LZA) via fivefold cross-
validation of the training dataset. The detailed perfor-
mance data are shown in Supplementary Table S2.
For BC prediction, the least-angle regression showed
the highest performance, with MAE, RMSE, and R2

metrics of 0.054 mm, 0.083 mm, and 0.948, respec-
tively. In the RZD1 prediction, the least-angle regres-
sion was the most accurate, with anMAE of 3.031 μm,
RMSE of 8.574 μm, and R2 of 0.708. The best model
for the RZD2 prediction was the CatBoost regressor,
which recorded anMAEof 3.775 μm,RMSEof 11.703
μm, and R2 of 0.791. For the LZA prediction, the
CatBoost regressor showed anMAE of 0.121°, RMSE
of 0.346°, and R2 of 0.798. In the case of LensSag,
Extra Trees exhibited the best performance, withMAE,
RMSE, and R2 values of 4.372 μm, 6.008 μm, and
0.921, respectively.

As shown in Table 4, these regression algorithms
generally showed slightly lower performance in the
test dataset compared to that in the fivefold cross-
validation. For BC prediction using least-angle regres-
sion, the MAE, RMSE, and R2 metrics were 0.052
mm, 0.105 mm, and 0.943, respectively. In the RZD1
prediction using least-angle regression, the MAE,
RMSE, and R2 metrics were 2.727 μm, 8.257 μm, and
0.718, respectively. For the RZD2 prediction, CatBoost
showed MAE, RMSE, and R2 values of 7.045 μm,
13.693 μm, and 0.704, respectively. For the LZApredic-
tion, CatBoost showed MAE, RMSE, and R2 values
of 0.118°, 0.344°, and 0.723, respectively. The LensSag
predictions obtained using Extra Trees showed MAE,
RMSE, and R2 values of 5.215 μm, 6.875 μm, and
0.921, respectively.

The developed methods were compared with the
ILS based on manifest refraction and keratometry,
using a test dataset consisting of 110 cases (Figure 6).
Regarding BC prediction, there was no significant
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Figure 3. Fivefold cross-validation performance of the top three models on the training dataset (N = 437). Results for the toric option
(A) and OAD (B) predictions. The metrics are shown as mean ± SD from the subset validations.

Figure 4. Classification performance for determining the toric lens and OAD of ortho-K. (A) Ground truth versus prediction of toric versus
non-toric lens. (B) Ground truth versus prediction of 10.5-mm versus 11.0-mm OADs.

Table 3. Performance of Best Models for Toric Option and OAD Prediction on the Test Dataset (N = 110)

Target Algorithm AUC Accuracy Precision Recall F1

Toric option (toric vs. non-toric lens) CatBoost Classifier 0.970 0.927 0.931 0.927 0.929
OAD (10.5 mm vs. 11.0 mm) Extra Trees Classifier 0.920 0.864 0.868 0.864 0.865

AUC, area under the receiver operating characteristic curve.

difference between the machine-learning prediction
and the achieved lens BCs (P = 0.817). However, the
ILS-based BC calculation was significantly lower than
the values ascertained by both the machine-learning
prediction (P < 0.001) and the achieved lens BCs (P
< 0.001). Similar results were observed for the predic-
tion of RZD1. The machine-learning prediction and
the achieved lens RZD1 showed no significant differ-

ence, but the ILS-based calculations showed signifi-
cant differences. In the LZA prediction, there were
no significant differences among the machine-learning
prediction, ILS-based calculation, and achieved lens
LZAs.

Figure 7 shows the feature importance and two-
way partial dependence plots for each prediction task.
Toric option prediction is primarily affected by cylin-
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Figure 5. Fivefold cross-validation performance of the top three models on the training dataset (N = 437). Results are shown for BC
(A), RZD1 (B), RZD2 (C), LZA (D), and LensSag (E) predictions. The metrics are shown as mean ± SD from the subset validations.

drical refraction and keratometric astigmatism. WTW
andACDwere the most important predictors of OAD.
Spherical and cylindrical refraction, flattest and steep-
est keratometry, and flat e values were themajor factors
predicting BC, RZD1, RZD2, and LZA. Finally, a
machine-learning calculator was developed for the
web-based interface (https://visuworks-dev.github.io/
ParagonCRT-Calculator/) based on this analysis. A
screenshot of the developed calculator is shown
in Figure 8.

Table 4. Performance of Best Models for BC, RZD1,
RZD2, LZA, and LensSag Prediction on the Test Dataset
(N = 110)

Target Algorithm MAE RMSE R2

BC (mm) Least-angle regression 0.052 0.105 0.943
RZD1 (μm) Least-angle regression 2.727 8.257 0.718
RZD2 (μm) CatBoost Regressor 7.045 13.693 0.704
LZA (°) CatBoost Regressor 0.118 0.344 0.723
LensSag (μm) ExtraTrees Regressor 5.215 6.875 0.921
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Figure 6. Comparison of the machine-learning (M/L) method and ILS in the test dataset. (A) BC; (B) RZD1; (C) LZA.

Figure 7. Permutation feature importance (PFI) estimates selected using the machine-learning method and two-way partial dependence
plots (PDPs). (A) Toric option prediction based on cylindrical refraction (MR Cyl) and keratometry astigmatism (dK) values (threshold = 0.5;
0 = non-toric; 1 = toric). (B) OAD prediction based on WTW and ACD values (threshold = 0.5; 0 = 10.5 mm; 1 = 11 mm). (C) BC prediction
based on MR Sph (spherical refraction) and K1 (flattest keratometry). (D) RZD1 prediction based on K1 (flattest keratometry) and MR Sph.
(E) RZD2 prediction based onMR Cyl and K2 (steepest keratometry). (F) LZA prediction based on K1 and flat e (flat or horizontal eccentricity).
(G) LensSag prediction based on K1 and K2.
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Figure 8. Schematic illustrating our proposedmachine-learningmodel for ortho-K lens fitting. A web-based calculator was developed for
practice (https://visuworks-dev.github.io/ParagonCRT-Calculator/).

Discussion

Ortho-K is an effective treatment option to slow
myopia progression for children and adolescents.17
We applied a machine-learning algorithm to develop
a CRT ortho-K lens parameter prediction model.
The machine-learning models effectively learned the
implicit lens prescription patterns in the learning
dataset. Our algorithm outperformed the traditional
fitting calculator, ILS, in predicting the BC and RZD1.
To the best of our knowledge, this is the first study
to comprehensively predict the ortho-K lens parame-
ters at an expert level using artificial intelligence. The
algorithm of the previous study predicted only two
factors (RZD and LZA); therefore, it might be limited
to ordering commercial CRT lenses in the real world.10
The algorithm we developed aims to assist in real-
world clinical practice by predicting all of the relevant
lens parameters and being accessible through a web-
based interface. According to a previous study, ortho-
K requires a long learning curve for novice practi-
tioners compared to those required for other types
of contact lenses.18 Our algorithm will be useful for
novice practitioners because it can provide expert-

level ortho-K lens parameters based on a data-driven
approach.

In this study, we have presented a novel ortho-
K fitting support tool to predict the lens design that
best suited each patient usingmachine-learningmodels
that successfully fit the data. We believe that the
machine-learning method showed a level of perfor-
mance applicable to actual clinical practice in deter-
mining ortho-K parameters such as toric option, OAD,
BC, RZD1, RZD2, LZA, and LensSag. By leverag-
ing clinical factors such as refraction, corneal topogra-
phy, andAL-scanmeasurements, the machine-learning
methods significantly enhanced the accuracy of predic-
tion compared to those of existing approaches. The
CRT fitting method using machine-learning models
has the potential to replace the traditional ILSmethod,
which relies solely on manifest refraction and keratom-
etry, thereby reducing the time-consuming trial-and-
error processes involved in lens fitting. Reducing trial-
and-error processes improves patient compliance and
achieves myopia suppression.19

We analyzed how the features were involved in
the prediction process of each model and attempted
to understand the reasoning process of the models.
Although some machine-learning algorithms are
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considered black-box models that cannot be inter-
preted,20 our approach provided insights into the
decision-making processes. As shown in Figure 7, the
factors used in the machine learning were consistent
with the variables considered important in actual clini-
cal practice. This analysis showed that the inference
process of the machine-learning model was consistent
with the ortho-K fitting principle. Machine-learning
methods can analyze not only manifest refraction and
keratometry but also additional clinical information
simultaneously and extract the necessary prediction
information from nonlinear variable spaces, as shown
in the two-way partial dependence plots. In our exper-
iments, most algorithms of the decision-tree–based
ensemble methods exhibited the highest performance.
These algorithms successfully modeled the distribu-
tion of a complex mixture of linear and nonlinear
boundaries. Recent studies have demonstrated the
most robust performances of the decision-tree–based
methods for a variety of engineering and medical
problems.21,22

Considering the differences in eye characteristics
between East Asians and Caucasians, the ILS method
based on the characteristics of Caucasian eye is likely
less suitable for East Asians. For example, unlike
ILS, which uses only MR Sph and K1 as factors
in LZA predictions, the machine-learning model uses
an additional flat e (horizontal eccentricity) factor.
Thus, the use of factors related to corneal morphol-
ogy, such as eccentricity, may help address the racial
bias inherent in the existing methods. Therefore, our
novelmachine-learning algorithms, specifically tailored
for East Asians, demonstrate their superiority in this
regard. Notably, East Asians and Caucasians exhibit
distinct clinical characteristics in ortho-K studies,23
and further studies are needed to develop more
accurate ortho-K lens fitting models.

A major advantage of the proposed model is that
it can use multimodal measurements to achieve an
accurate ortho-K lens fitting. However, many input
parameters can be considered disadvantageous because
of their inconvenience. Another advantage is that we
developed a web-based interface for a practical and fast
hands-on experience (https://visuworks-dev.github.io/
ParagonCRT-Calculator/). This tool is publicly avail-
able on GitHub, which provides free repositories.
If more complex machine-learning–based tools for
ortho-K lens parameter selection are developed in
the future, they will be commercialized due to server
operating costs.

However, this method has some limitations that
must be addressed in future studies. First, it is necessary
to include a wider dataset to ensure generalizability
of the machine-learning model. The dataset collected

in this study consisted of data from Korean patients
between the ages of 7 and 20 years who were treated
at a single clinic. Therefore, to ensure that the devel-
oped model is effective for more diverse age groups
and ethnic backgrounds,24,25 extensive data reflect-
ing different population characteristics are required.
Accordingly, external validation should be performed
using independent sets. Second, a prospective study is
required to determine whether the developed method
reduces the need for a trial-and-error approach by
practitioners.26 The machine-learning method was
more accurate than the traditional method; however,
further validation is required to determine whether
it reduces the number of lens fittings until a lens
suitable for each patient is found in the clinical field.
Third, we used permutation feature importance and
two-way partial dependence plots for feature analy-
sis. However, these methods are insufficient to repre-
sent the decision-making process in machine learn-
ing. As the number of features increased, it became
difficult to visualize and interpret all interactions27;
therefore, in this study, only the two features with
the highest importance scores for each model were
analyzed.

In conclusion, we demonstrated the potential
of machine learning in determining CRT ortho-K
lens parameters, particularly in supporting data-
driven decision-making. We developed an expert-level
machine-learning–based model for determining the
comprehensive ortho-K lens parameters. We also
created a web-based application for this task (https:
//visuworks-dev.github.io/ParagonCRT-Calculator/).
This model may provide lens fitting parameters more
accurate than those provided by conventional calcu-
lations and can reduce the need for a trial-and-error
approach. Future work should focus on applying
a broader dataset and exploring machine-learning
techniques to further improve the predictive capabil-
ities and applicability of the model in real-world
scenarios.
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