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Purpose: Artificial intelligence (AI)–assisted ultra-widefield (UWF) fundus photographic
interpretation is beneficial to improve the screening of fundus abnormalities. Therefore
we constructed an AI machine-learning approach and performed preliminary training
and validation.

Methods: We proposed a two-stage deep learning-based framework to detect early
retinal peripheral degeneration using UWF images from the Chinese Air Force cadets’
medical selection between February 2016 and June 2022. We developed a detection
model for the localization of optic disc andmacula, which are used to find the peripheral
areas. Then we developed six classification models for the screening of various retinal
cases. We also compared our proposed framework with two baseline models reported
in the literature. The performance of the screeningmodels was evaluated by area under
the receiver operating curve (AUC) with 95% confidence interval.

Results: A total of 3911 UWF fundus images were used to develop the deep learning
model. The external validation included 760 UWF fundus images. The results of compar-
ison study revealed that our proposed framework achieved competitive performance
compared to existing baselines while also demonstrating significantly faster inference
time. The developed classification models achieved an average AUC of 0.879 on six
different retinal cases in the external validation dataset.

Conclusions: Our two-stage deep learning–based framework improved the machine
learning efficiency of the AI model for fundus images with high resolution and many
interference factors by maximizing the retention of valid information and compressing
the image file size.

Translational Relevance: This machine learning model may become a new paradigm
for developing UWF fundus photography AI-assisted diagnosis.

Introduction

The advent of ultra-widefield fundus imaging
(UWF) has made it possible to observe almost the
entire fundus through a nonmydriatic pupil with a
200° view,1 including the posterior pole and peripheral

regions.2 With eye position guidance, we can observe
almost all retinal conditions.

The UWF fundus photography technology
(Dytona; Optomap, Dunfermline, UK) was applied
in the medical selection of Air Force cadets of the
Chinese People’s Liberation Army for several years.
According to our experience, the application of UWF
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laser fundus photography improves the efficiency of
fundus examination by more than 30% compared
with the traditional examination mode in Chinese Air
Force cadets’ medical selection. Thus UWF photog-
raphy has become a necessary fundus examination
tool for the medical selection of Chinese Air Force
cadets. According to our previous study, peripheral
retinal degeneration (including snail track degenera-
tion, lattice degeneration, microcystic degeneration),
white without pressure, and vitreoretinal tuft are the
most common peripheral retinal diseases observed
during medical selection of Chinese Air Force cadets.3
Studies have shown that these signs do not carry a
high risk of clinical events such as retinal detachment
or vitreous hemorrhage, and regular examinations are
generally recommended in clinical work,4,5 except for
lattice degeneration, which is directly related to retinal
detachment in 20%.6 However, the medical risk of
these abnormal signs may increase when piloting an
airplane, especially in the situation of high accelera-
tion.7 Meanwhile, these peripheral retinopathies are
mostly progressive. Follow-up and timely intervention
are necessary.

UWF imaging can help identify diabetic retinopa-
thy, retinal detachment, macular holes, pathological
myopia,8–11 and so on. However, the interpretation
of UWF images requires professional retinal skills,
which limits the wide application in grassroots units.
Therefore, an automated intelligent diagnosis system
based on deep learning has been developed to improve
the accuracy of image diagnosis. Currently, research
on deep learning systems using UWF images has
mostly focused on the detection of glaucomatous optic
neuropathy, retinal exudates, and drusen.12,13 However,
these retinal disease detection models have limited
application in the medical selection of Air Force cadets
and in recognition of early peripheral retinopathy.
To date, no automated intelligent systems have been
reported to detect early peripheral retinal degenera-
tion or physiological changes. In addition, an effec-
tive model of AI assistant image diagnosis requires a
huge sample for deep machine learning. Traditional
deep learning-based methods take the resized image
(e.g., 224 × 224) as input. However, UWF fundus
images are high-resolution with about 2000 to 3000
pixels, and resizing these images may result in a loss of
important details, such as some early lesions, which are
always small and can be easily ignored. In addition, to
increase the sensitivity of detecting peripheral lesions,
four directions of eye position guidance are needed
when taking fundus images.14 To solve these problems,
in this study, we developed a deep learning system
for automated detection of early peripheral retinal
degeneration usingUWF images. The proposed system

enhances the accuracy of lesion detection in peripheral
retinal areas, which greatly improves the identification
rate of peripheral lesions.

Methods

Label Setting

In total six labels were chosen in our study.
“Normal/abnormal” was defined as whether there
was an abnormal sign in the fundus image; “facula”
was defined as a block highlight area, as is shown
in Figure 1A; “degeneration” was defined as various
types of peripheral retinal degeneration, such lattice
degeneration or snail trace-like degeneration (shown
in Fig. 1B); “hyperpigmentation” and “hypopigmen-
tation” were defined as choroidal pigment epithelium
or retinal pigment epithelium hyperplasia or atrophy
(shown in Fig. 1C); and label “WWOP” was defined
as white without pressure, which is quite common in
clinical practice (shown in Fig. 1D).

Datasets Collection

All fundus images were collected from the medical
selection of theChineseAir Force cadets’medical selec-
tion between February 2016 and June 2022. Students’
fundus imageswere taken under nonmydriasis status by
the coauthor Tengyun WU, and use the eye position
guidance function of UWF photography scanning
system (Daytona; Optos, Dunfermline, UK) to collect
the upper, lower, nasal, and temporal fundus images,
respectively.

All these images were reviewed by four retinal
specialists independently. To ensure the accuracy of
target lesions, the same images were sent anony-
mously and independently to two retinal specialists
who have extensive medical selection experience. When
two retinal specialists reached a consensus regard-
ing identification outcome, the images were used for
subsequent model training. Inconsistency resulted in
a discussion among retinal specialists, and images
that did not have consistent results were discarded.
If the image in the fundus photograph was signifi-
cantly deformed or the image of eyelid obscured the
area behind the vortex vein, then this photograph was
excluded from our study. Because interference, such as
occlusion and reflection, needs to be learned during
AI machine training, the occurrence of reflection or
occlusion on fundus photographs that do not interfere
with the recognition of fundus signs is not an exclu-
sion standard. As is shown in the pipeline, a total of
4023 images were used for AI machine learning, and
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Figure 1. Schematic diagram of label setting. (A) A typical example for label “facula”, which was defined as a block highlight area.
(B) A typical example for label “degeneration”. (C) A typical example for label “hyperpigmentation”. (D) A typical example for label “WWOP”.

760 images were used to validate the performance of
the diagnostic model.

Development of a Deep-Learning System

Image Preprocessing
To demonstrate the effectiveness of our proposed

methods, we investigated three preprocessing
techniques:

Resizing Method. For all raw images (with resolution
about 2000 to 3000 pixels), which were annotated as
positive or negative, they were resized into a size of
512 × 512 pixels. Our model takes a mini-batch of
the resized images as inputs for training. It is obvious
that the “resizing method” does not require any pixel-
level annotation like bounding box for the location of
lesions.

Patch-Based Method. For all raw images, they were
first resized to 3200 × 3200 pixels. Then, a sliding

window with the size of 512 × 512 pixels was used
to extract patches from the resized raw images with
the stride of 256. To obtain the patch-level annotation
for each extracted patch, a threshold t was set. Specifi-
cally, we calculated the areas of lesions occupied in the
patch. Those patches whose areas of lesions exceed t
were annotated as “positive”; those that did not were
annotated as “negative.” Twenty positive patches were
selected for each lesion blob. For each lesion blob,
five different positions of patch center were randomly
selected around the center of the lesion blob with
four different sizes (512 × 512, 640 × 640, 720 ×
720, 896 × 896). Finally, those patches are resized
into 512 × 512. The model takes a mini-batch of
the patches as inputs for training. In the inference
stage, we took the max value of all patches extracted
from one image as the positive score. Compared
with the “resizing method,” the “patch-based method”
requires pixel-level annotation and more inference
time.
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Edge-Sensitive Method. In this study, we care about
those lesions existing around the edge area of the
UWF fundus image. First, we trained a model, which
was leveraged to detect out the locations of optic
disc and macula. Then, we calculated the distances
of the optic disc to the edge of four directions (up,
bottom, left, and right). The edge of the direction
with the largest distance could be regarded as the
“real” edge of the fundus. Given the original image
with size (0, 0) ∼ (w, h) (from top-left to bottom-
right), the locations of optic disc (x1, y1) and macula
(x2, y2), the distance between optic disc andmacula can
be calculated as r =

√
(x1 − x2)2 + (y1 − y2)2 and the

center of two objects can be formulated as (x3, y3) =
( x1+x2

2 ,
y1+y2

2 ). We first calculate the distances of the
optic disc to its left edge and right edge with w1 = x1 −
0 and w2 = w − x1. Then we calculate the distances of
the optic disc to its top edge and bottom edge with h1
= y1 − 0 and h2 = h − y1. We have the following ties to
obtain the edge area:

a. If h1 < h
3 , we crop the bottom edge (0, y3 + 2*r)

∼ (w, h) as the edge area.
b. If h1 > 2∗h

3 , we crop the top edge (0, 0) ∼ (w, y3
− 2*r) as the edge area.

c. If h
3 < h1 < 2∗h

3 and w1 < w
3 , we crop the right

edge (x3 + 2*r, 0) ∼ (w, h) as the edge area.
d. If h

3 < h1 < 2∗h
3 and w1 > 2∗w

3 , we crop the left
edge (0, 0) ∼ (x3 − 2*r, h) as the edge area.

e. If h
3 < h1 < 2∗h

3 and w
3 < w1 < 2∗w

3 , we compare
the value of w1 and w2. If w1 > w2, we crop the
left edge and vice versa.

The cropped the edge area was then resized into the
desired resolutions and taken as the input of themodel.
Our proposed “edge-sensitive method” shows that the
ability and sensitivity of early detection of those lesions
occurs in the edge of the fundus such as retinal periph-
eral degeneration.

Model Building
Our proposed edge-sensitive preprocessing method

necessitates the precise localization of the optic disc
and macula. To achieve this, we use the YOLOv318
detector, a state-of-the-art deep learning architecture
designed for object detection tasks. YOLOv3 is known
for its real-time object detection capabilities, and it uses
a deep convolutional neural network that divides the
input image into a grid and simultaneously predicts
bounding boxes and class probabilities for objects
within each grid cell. This architecture is highly efficient
and has demonstrated remarkable accuracy in object
detection.

For the subsequent classification task, where we
diagnose multiple retinal lesions, we use the ResNet-
5015 model. ResNet-50 is a variant of the Residual
Network (ResNet) architecture, which is celebrated for
its ability to train very deep neural networks effec-
tively. ResNet-50 comprises 50 layers and incorporates
residual connections that enable the smooth flow of
gradients during training. It has been widely adopted
in computer vision tasks and is particularly well
suited for capturing intricate features within images,
making it an excellent choice for our classification
model.

Implementation Details
All input images were resized to 512 × 512 pixels

before their use in the detection and classification
network. The pixel values of each fundus images were
normalized from (0, 255) to (0, 1) before the model
training. To obtainmore samples for training, we apply
some data augmentation techniques such as horizon-
tal and vertical flips. The Adam optimizer was used for
backpropagation. For the yolov3 detector, the learn-
ing rate was set as 1 × 10−4 with weight decay of
5 × 10−4. For the classification model, the learning
rate was originally set as 1 × 10−3 and the division
by 10 on epoch 10 and epoch 20. The total 50 epochs
were trained. All the experiments were performed
using Ubuntu version 18.04.4 LTS 64-bit with GPU
3090 and 24 GB memory. The implementation of
deep neural networks was based on PyTorch platform
version1.6.0.

Internal Validation
Images with the cared lesions were randomly

assigned in a 4:1 split to training sets and inter-
nal validation sets. All diagnosis models were trained
on training images with the specific lesions, and the
internal validation sets were used to determine which
checkpoint we should select during the training phase
for the external validation. Statistical performance
for the classifier was measured by calculating the
area under the receiver operating characteristic curve
(AUROC).

External Validation
To test the performance of the diagnostic model in a

real-world, 760 images were independently collected to
form the external validation sets and were not included
in the training or internal validation sets. Statistical
performance for the classifier was measured by calcu-
lating AUROC, sensitivity, specificity, precision, and
F1 score. The threshold for the prediction probability
from the binary classification model is selected using
the Youden index.
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Results

Automatic Preprocessing Versus
Ophthalmologists’Manipulation

To evaluate the effectiveness of our proposed
edge-sensitive preprocessing method, we recruited two
general ophthalmologists who hadmore than two years
of experience in UWF fundus image examination. For
randomly-selected 100 UWF fundus images, they were
asked to find the peripheral area of each image and
manually crop the desired areas. Then we compared the
model outputs and results from the ophthalmologists.
Among 100 images, only two images were wrongly
cropped. We reviewed these two images, and it was
found that the eyes in these two images are both in
the primary position, which was not of concern or
suitable in our study.

On Evaluation of Detection of Optic Disc and
Macula

To obtain the peripheral area for the following
process, the accuracy of the detection of the optic
disc and macula should be promised. In Figure 2
andTable 1, we report the performance of the detection
of optic disc and Macula using different widely-
used object detection framework (e.g., SSD,16 Faster-
RCNN,17 YOLOv3).18 The detection accuracy is
calculated as the ratio of number of successful detected
object and total number of objects. It was found that
YOLOv3 achieved the highest accuracy and other
frameworks also achieved competitive performance. In
116 and 115 images out of 117 validation images, optic

Table 1. Detection Accuracy of OD and Macula Using
Different Object Detection Network

Method OD Macula

SSD 99.15% 93.16%
Faster-RCNN 98.29% 97.43%
YOLOv3 99.15% 98.29%

OD, optic disc; SSD, single shot multibox detector.

disc and Macula were successfully detected, respec-
tively.

Prospective Validation Results in Screening
Setting

The comparisons of the model performance
between our developed framework and other compar-
ison methods in six cases are shown in Figure 3
and Table 2. For the original resize method, the
AUROC score, sensitivity, specificity, and F1 score for
identifyingNormal/Abnormal reached 0.9394 (0.8889–
0.9898), 0.8571 (0.7846–0.9297), 0.9387 (0.8879–
0.9894), and 0.5950 (0.5022–0.6879), respectively. For
other observed cases achieved the AUROC (95% confi-
dence interval [CI]) of facula 0.9525 (0.9221–0.9828),
peripheral retinal degeneration 0.7971 (0.7255–0.8687),
hyperpigmentation 0.7525 (0.5978–0.9073), and
hypopigmentation 0.8836 (0.6906–1.0000).

For the cropped method, the AUROC score,
sensitivity, specificity, and F1 score for identifying
Normal/Abnormal reached 0.9838 (0.9569–1.0000),
0.9048 (0.8432–0.9663), 0.9586 (0.9164–1.0000),
and 0.6972 (0.6066–0.7879), respectively. For other
observed cases achieved the AUROC (95% CI) of

Figure 2. Study framework of the proposedmethods for the detection. OD, optic disc; MA, macular.
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Figure 3. The comparisons of Resizing method’s, Path-based method’s and Edge-sensitive method’s (our proposed method’s)
AUROC curves with 6 cases classification on the external validation dataset.

facula 0.9534 (0.9233–0.9834), peripheral retinal
degeneration 0.8840 (0.8259–0.9422), hyperpigmenta-
tion 0.7459 (0.5902–0.9016), and hypopigmentation
0.8673 (0.6642–1.0000).

For our proposed edge-sensitive method, the
AUROC score, sensitivity, specificity, and F1 score
for identifying Normal/Abnormal reached 0.9643
(0.9248–1.0000), 0.9286 (0.8743–0.9829), 0.9387
(0.8879–0.9894), and 0.6290 (0.5363–0.7218), respec-
tively. For other observed cases achieved the AUROC
(95% CI) of facula 0.9537 (0.9238–0.9837), periph-
eral retinal degeneration 0.8996 (0.8449–0.9544),
hyperpigmentation 0.7301 (0.5722–0.8880), and
hypopigmentation 0.8858 (0.6944–1.0000). For white
without pressure, two comparison methods did
not achieve satisfactory results and our proposed
method achieved the AUROC (95% CI) of 0.8450
(0.7420–0.9481).

Time-Consuming Analysis

Because we applied different pre-processing
techniques, the efficiency and time-cost should be
considered. For the original resizing method, the
model took the whole image as the input during the
training and inference phase. For the patch-based
method, 20 positive patches were cropped during the
training phase. During the inference phase, a sliding
window was leveraged to crop an average of 16 to 20

patches as the inputs to the model. Hence, the model
took 20 and 16 to 20 times longer than the origi-
nal resizing method during the training and testing
phases, respectively. For our proposed edge-sensitive
method, the original image was fed into two deep
neural networks and took about only two times longer
than the original resizing method both in the training
and inference time. A detailed comparison is shown
in Table 3.

Heatmap Visualization

In this study, Grad-CAM19 is applied for the visual-
ization analysis. The results are shown in Figure 4. The
highlighted regions denote the pixels that contribute
most to the diagnostic results. The regions of interest
also match with lesions that ophthalmologists would
pay attention to when making the diagnosis.

Discussion

The application of UWF photography helps
ophthalmologists to have a better observation of the
fundus, because it can collect the information of about
200° of the fundus and present it on a photograph
with a resolution of 4 μm in less than one second. It
has become an essential part of the medical selection
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Table 2. AUC, Sensitivity, Specificity, Precision, and F1 Performance of Different AI Model

Resizing Method Patch-Based Method Edge-Sensitive Method

Normal/Abnormal
AUC 0.9394 (0.8889–0.9898) 0.9838 (0.9569–1.0000) 0.9643 (0.9248–1.0000)
Sensitivity 0.8571 (0.7846–0.9297) 0.9048 (0.8432–0.9663) 0.9286 (0.8743–0.9829)
Specificity 0.9387 (0.8879–0.9894) 0.9586 (0.9164–1.0000) 0.9387 (0.8879–0.9894)
Precision 0.4557 (0.3686–0.5428) 0.5672 (0.4747–0.6596) 0.4756 (0.3871–0.5641)
F1 0.5950 (0.5022–0.6879) 0.6972 (0.6066–0.7879) 0.6290 (0.5363–0.7218)
Facula
AUC 0.9525 (0.9221–0.9828) 0.9534 (0.9233–0.9834) 0.9537 (0.9238–0.9837)
Sensitivity 0.9149 (0.8753–0.9545) 0.9468 (0.9149–0.9788) 0.9149 (0.8753–0.9545)
Specificity 0.8977 (0.8548–0.9406) 0.8864 (0.8415–0.9312) 0.8996 (0.8571–0.9422)
Precision 0.6143 (0.5497–0.6789) 0.5973 (0.5326–0.6620) 0.6187 (0.5542–0.6832)
F1 0.7350 (0.6744–0.7957) 0.7325 (0.6717–0.7933) 0.7382 (0.6778–0.7986)
Degeneration
AUC 0.7971 (0.7255–0.8687) 0.8840 (0.8259–0.9422) 0.8996 (0.8449–0.9544)
Sensitivity 0.6607 (0.5798–0.7416) 0.8214 (0.7528–0.8900) 0.8036 (0.7327–0.8744)
Specificity 0.8106 (0.7406–0.8806) 0.8295 (0.7621–0.8970) 0.8580 (0.7949–0.9210)
Precision 0.2701 (0.2110–0.3292) 0.3382 (0.2709–0.4056) 0.3750 (0.3039–0.4461)
F1 0.3834 (0.3116–0.4553) 0.4792 (0.4006–0.5578) 0.5114 (0.4313–0.5914)
Hyperpigmentation
AUC 0.7525 (0.5978–0.9073) 0.7459 (0.5902–0.9016) 0.7301 (0.5722–0.8880)
Sensitivity 0.5385 (0.3762–0.7007) 0.5385 (0.3762–0.7007) 0.3846 (0.2427–0.5265)
Specificity 0.8810 (0.7601–1.0000) 0.8887 (0.7710–1.0000) 0.9827 (0.9328–1.0000)
Precision 0.1014 (0.0483–0.1546) 0.1077 (0.0518–0.1635) 0.3571 (0.2209–0.4934)
F1 0.1707 (0.0894–0.2520) 0.1795 (0.0950–0.2640) 0.3704 (0.2313–0.5094)
Hypopigmentation
AUC 0.8836 (0.6906–1.0000) 0.8673 (0.6642–1.0000) 0.8858 (0.6944–1.0000)
Sensitivity 0.6000 (0.3359–0.8641) 0.6000 (0.3359–0.8641) 0.6000 (0.3359–0.8641)
Specificity 0.8412 (0.6242–1.0000) 0.9319 (0.7784–1.0000) 0.9168 (0.7491–1.0000)
Precision 0.0345 (0.0029–0.0660) 0.0769 (0.0122–0.1417) 0.0638 (0.0090–0.1186)
F1 0.0652 (0.0093–0.1211) 0.1364 (0.0299–0.2428) 0.1154 (0.0231–0.2077)
WWOP
AUC NA NA 0.8450 (0.7420–0.9481)
Sensitivity NA NA 0.7727 (0.6560–0.8895)
Specificity NA NA 0.8053 (0.6939–0.9168)
Precision NA NA 0.1429 (0.0871–0.1986)
F1 NA NA 0.2411 (0.1586–0.3237)

Table 3. Comparison of Training and Testing Time
Consumption for Three Preprocessing Techniques

Method Training Test Precision

Original 1x 1x Low
Cropped 16x–20x 16x High
Edge-sensitive 1x 1x High

of Chinese Airforce cadets. In our experience, the
use of UWF photography has significantly improved

screening efficiency, especially when we need to observe
retinopathy in the far periphery.

AI-assisted diagnosis is rapidly developing in clini-
cal disease diagnosis and management. It has made
promising progress in the screening and follow-
up of fundus diseases such as age-related macular
degeneration, diabetic retinopathy, and glaucoma.20–23
However, the technology of AI-assisted early periph-
eral retinopathy diagnosis using UWF imaging as
a detection object in healthy populations is still
immature. In addition, AI-assisted early peripheral
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Figure 4. TheGrad-CAMvisualization results and correspondingground truth for thedetectionof retinal peripheral lesions. In this
study, Grad-CAM is applied for the visualization analysis.

retinopathy screening for Air Force flying cadets has
not yet been addressed.

Compared to traditional color fundus photography,
UWF imaging has a much larger document size and
resolution ratio, as well as more interference informa-
tion. Therefore it is difficult to use the whole image
for AI machine learning. If we reduce the resolution
of the images, a lot of information will be lost, which
will significantly reduce the accuracy of the AI model
in identifying peripheral retinal lesions. As reported
in a previous study,11 some researchers cut the whole
fundus image into several small blocks to reduce the
input size of each image before machine learning.
However, this preprocessing method may increase the
time required for machine learning. It is necessary to
develop an image preprocessing method that can not
only solve the problem of large image resolutions but
also maximize the retention of useful information.

In clinical practice, eye position guidance is the key
factor that can improve the detection rate of periph-
eral retinopathy.14 Thus four-direction eye position
guidance has become a routine examination in the
medical selection of Chinese Air Force cadets and
has becoming increasingly important in clinical work.
The AI model needs to have deep learning of the
images acquired after eye position guidance so that
it can better handle the images acquired in clinical
practice.

Taking these factors into consideration, in this study
we developed a new image preprocessing scheme. As
is shown in Figure 2, we leverage an object detection
network to detect the location of optic disc andmacula;
then the edge of UWF could be located following
the ties accordingly. We first evaluate the effectiveness
of our proposed edge-sensitive preprocessing method.
Then, all images those used in the machine learning
were preprocessed using this method.

As shown in Table 1, our model performs equally
well in identifying peripheral retinopathy compared
with that reported in the previous literature. Differ-
ently, as we use edge-sensitive preprocessing logic,
the preprocessing process can ensure the retention
of peripheral lesion information. In addition, as is
shown in Table 2, the time consumed in both the
training and testing phases is significantly reduced.
Our research provides a new image preprocessing and
training scheme for AI machine learning with high-
resolution images that can effectively improve learning
efficiency.

It is noteworthy that our model showed clear advan-
tages in the identification of WWOP. Although it is not
difficult to diagnose WWOP clinically, its features are
not very obvious in fundus photography. In this case,
both the resizing method and the patch-based method
will cause a lot of information loss, and our “edge
sensitive” method demonstrated a significant advan-
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tage in maximizing the retention of valid informa-
tion. Therefore we speculate that our model may have
more advantages in identifying lesions with large area
and insignificant imaging features, such as WWOP,
dark without pressure (DWOP), and peripheral retinal
superficial detachment.

In general, the medical selection of Chinese Air
Force cadets is the basis for the construction of air
force combat power. Therefore, how to screen quickly
and accurately, to reduce misdiagnosis and omission,
and to achieve scientific and accurate medical selec-
tion is important work related to ensuring future air
force pilot safety. Although the clinical significance of
peripheral retinal degeneration, WWOP, an more is
limited, it still has potential risk in special environ-
ments such as flight operations and requires careful
examination and careful handling of the fundus.
The model in this study uses UWF photography to
assist in the diagnosis of early peripheral retinopathy,
greatly increasing the efficiency of screening with high
accuracy; at the same time, such systematic tools can
reduce the workload of the specialists involved and
allow objective and efficient screening of patients.

Also, our study provides a viable option for
AI machine learning to recognize peripheral fundus
abnormalities, which is expected to improve the appli-
cation of AI-assisted diagnosis in ophthalmology clini-
cal diagnosis in the future.

To the best of our knowledge, this is the first report
to establish a deep learning system to detect early
peripheral retinal degeneration, WWOP, and pigmen-
tary changes in UWF images with an accuracy level.
In addition, this study has several limitations. First, in
this study, we focused on the detection of peripheral
retinopathy, so our model has poor detection efficiency
of pathological changes of the fundus posterior pole.
In addition, all the images used for machine learn-
ing were selected from teenagers who participated in
the medical selection of Air Force cadets. Because
our AI-based diagnostic model may not have high
detection efficiency for the fundus images of clinical
patients, deep learning of clinical cases is needed in the
future.
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