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PURPOSE. This study aimed to explore the underlying mechanisms of the observed
visuomotor deficit in amblyopia.

METHODS. Twenty-four amblyopic (25.8 ± 3.8 years; 15 males) and 22 normal
participants (25.8 ± 2.1 years; 8 males) took part in the study. The participants were
instructed to continuously track a randomly moving Gaussian target on a computer
screen using a mouse. In experiment 1, the participants performed the tracking task
at six different target sizes. In experiments 2 and 3, they were asked to track a target
with the contrast adjusted to individual’s threshold. The tracking performance was repre-
sented by the kernel function calculated as the cross-correlation between the target and
mouse displacements. The peak, latency, and width of the kernel were extracted and
compared between the two groups.

RESULTS. In experiment 1, target size had a significant effect on the kernel peak (F(1.649,
46.170) = 200.958, P = 4.420 × 10−22). At the smallest target size, the peak in the ambly-
opic group was significantly lower than that in the normal group (0.089 ± 0.023 vs. 0.107
± 0.020, t(28) = −2.390, P = 0.024) and correlated with the contrast sensitivity function
(r = 0.739, P = 0.002) in the amblyopic eyes. In experiments 2 and 3, with equally visible
stimuli, there were still differences in the kernel between the two groups (all Ps < 0.05).

CONCLUSIONS. When stimulus visibility was compensated, amblyopic participants still
showed significantly poorer tracking performance.

Keywords: amblyopia, visual tracking, contrast sensitivity function, uncertainty, internal
noise, continuous psychophysics, cross-correlation

Amblyopia, one of the most common eye diseases in
children,1,2 is a developmental visual disorder, resulting

from the abnormal visual experience early in life.3 It is clin-
ically characterized by reduced best-corrected visual acuity
that cannot be attributed directly to any apparent pathologic
changes in the eyes.4 Amblyopia affects the central visual
system beginning at the primary visual cortex.3,5 Patients
with amblyopia exhibit a variety of visual deficits, includ-
ing reduced contrast sensitivity,6–10 abnormal spatial local-
ization,11 impaired stereopsis,12,13 and global motion percep-
tion.14,15

Besides the visual deficits observed in the laboratory,
amblyopic patients also perform significantly worse than
normal people in visuomotor control (see Grant and Mose-
ley16 for a review). For example, by analyzing the key kine-
matic parameters of the hand movement, people found that
both amblyopic children17 and adults18 showed prolonged
movement execution time and high error rate in grasp-
ing household objects (i.e., glue sticks and pill bottles)

when viewing with the amblyopic eye and with two eyes.
Niechwiej-Szwedo et al.19 found similar results in patients
with strabismic amblyopia. Moreover, they also reported an
altered temporal coordination between eye and hand move-
ments in these patients.20

The aforementioned studies mainly focused on the clin-
ical significance of the effect of amblyopia on visuomo-
tor control. Because visuomotor processing involves inte-
gration of sensory (vision, proprioception) information and
the coordination of vision and motor processes,21–23 with-
out systematic manipulation of visual input, it is difficult to
understand the exact mechanisms underlying the observed
visuomotor deficit in amblyopia.

The continuous psychophysical paradigm, a newly devel-
oped computer-based method that allows precise manip-
ulation of visual input,24–27 could serve a potential tool
to investigate the visuomotor control. By asking partici-
pants to continuously track a stimulus varying in certain
feature space during a long time, the paradigm generates
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high-throughput time-series data enables us to perform
cross-correlation analysis to relate the behavioral response
to the input28–33 and to reveal the temporal dynamics of
the biological system. It has been demonstrated that the
paradigm can provide the same measure as the classic trial-
based forced-choice paradigm with a higher efficiency.24,26

Thus, it is very suitable for studies on clinical populations
and children, who often have difficulties undergoing long
testing sessions.

In this study, we investigated the visuomotor control in
amblyopia using a continuous tracking paradigm with three
separate experiments. Both amblyopic and normal partic-
ipants tracked a randomly moving Gaussian target on a
computer screen using a mouse. In experiment 1, partici-
pants performed the tracking task under six different stim-
ulus conditions. We validated the tracking paradigm by
examining the relationship between the tracking perfor-
mance and target location uncertainty. In experiment 2, we
first measured the detection threshold for 150-ms random
walk motion in both groups and then measured the track-
ing performance at their respective thresholds. Considering
the potential difference in motion integration time between
the two groups, in experiment 3, we asked participants to
track a target at their individual motion detection threshold
measured with a 500-ms duration.

METHODS

Participants

Twenty-four amblyopic (A1–A24; 25.8 ± 3.8 years; 15 males)
and 22 normal participants (N1–N22; 25.8 ± 2.1 years; 8
males) were recruited in the study. Participants A1 to A15
and N1 to N15 took part in experiment 1. Participants A2, A3,
A5, A6, A7, A8, A12, A13, A14, and A16 to A21 and N2 to N6,
N9, and N14 to N22 took part in experiment 2. Participants
A2, A3, A5, A6, and A22 to A24 and N2, N3, N5, N15, N18,
N19, and N22 took part in experiment 3.

All amblyopic participants who had been previously diag-
nosed were recruited at Wenzhou Eye Hospital. The detailed
information of the amblyopic participants can be found
in Table A1, Appendix A. The age-matched normal partic-
ipants, with best-corrected normal visual acuity (logMAR
≤0.0), were graduate students at Wenzhou Medical Univer-
sity. The detailed information of the normal participants can
be found in Table A2, Appendix A. All participants under-
went comprehensive ophthalmologic and optometric exam-
inations conducted by the first author, LC. All participants
were right-handed.

The experiment protocol adhered to the guidelines of the
Declaration of Helsinki and was approved by the institu-
tional review board of human subject research of the Eye
Hospital, Wenzhou Medical University. Informed consent
was obtained from each participant before the experiment.

Apparatus

Eye dominance was determined with the hole-in-card
method for the normal participants.34 Visual acuity (VA)
was measured using the early treatment diabetic retinopathy
study (ETDRS) chart.35,36 Stereoacuity was measured using
an random dot stereogram chart.37 Contrast sensitivity func-
tion (CSF) was measured using the quick CSF procedure
with a two-alternative forced-choice (2AFC) grating orien-
tation identification task.38–40

The programs used in the tracking and motion detection
experiment were written in MATLAB (MathWorks, Natick,
MA, USA) with the Psychtoolbox extension41 and run on
an Intel NUC computer (NUC6i7kYK; Intel Corporation,
Santa Clara, CA, USA). The stimuli were displayed on a
gamma-corrected monitor (ASUS SWIFT PG278QR; Asustek
Computer, Taipei, Taiwan) running at 120 Hz with a resolu-
tion of 2560 × 1440 pixels. The monitor has been carefully
tuned and calibrated to minimize the typical artifacts associ-
ated with liquid crystal displays.42,43 The background lumi-
nance was set to 58.5 cd/m2. A standard USB mouse was
used in the tracking experiment.

Observers viewed the stimuli monocularly at a distance
of 1.34 m in a dark room with their best optical correction,
if any. The eye not being tested was occluded by an opaque
patch. A chinrest was used to maintain head position during
the experiment.

Stimuli

The stimuli for tracking were similar to those used in
Bonnen et al.24 The target was a luminance increment with
a two-dimensional Gaussian profile (Fig. 1A) embedded in
a square field of dynamic Gaussian pixel noise subtended
6.5° (Fig. 1C). The surrounding area of the noise field was
set to the gray background during the entire experiment.
In each tracking trial, the target started at the center of
the noise field and moved according to a random walk
(Brownian) process for 20 seconds (Fig. 1C). The location
of the target was updated every two frames (16.7 ms). The
target displacements in the horizontal and vertical direc-
tions between two consecutive updates were drawn inde-
pendently from a Gaussian distribution with a mean of 0
and a standard deviation of 0.02°. Each noise element of
the noise field subtended 0.02° × 0.02°, the RMS contrast of
which was independently drawn from Gaussian distribution
with a zero mean and 0.134 standard deviation and updated
every two frames. The mouse cursor was indicated by a red
dot with a 0.08° diameter, the location of which was also
updated every two frames.

In experiment 1, we attempted to investigate how the
performance of the tracking paradigm was affected by the
visual input by manipulating the target location uncertainty.
The luminance of the target was varied with its size so that
the luminous flux (the volume under the Gaussian) was
constant for all target sizes. Six different target sizes, as
represented by the standard deviation of the Gaussian, 11,
13, 17, 21, 25, and 29 arcmin, were used (Fig. 1B). The Weber
contrast of the target at six different sizes was 1.0, 0.716,
0.419, 0.274, 0.194, and 0.144, respectively. This design used
the property that, for Gaussian targets, the probability of the
target center being at a specific location is directly propor-
tional to the luminance value at that location. The constant
luminous flux constraint is equivalent to keep the total prob-
ability in space constant for all six conditions. All targets
were visible. The spatial frequency range of the six targets
was less or around 1 cpd (Fig. B1, Appendix B), where the
amblyopic participants showed minimum or no reduction
in contrast sensitivity (Fig. C2, Appendix C). The target was
kept the same during a tracking trial.

In experiment 2, a two-interval forced-choice (2IFC) task
was used to measure the Weber threshold for the random
walk motion detection. The stimulus was either a static
or randomly walking Gaussian luminance increment with
the size of 11 arcmin. The static stimulus was presented at
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FIGURE 1. (A) The target for tracking was a luminance increment with a Gaussian profile. (B) The images of six targets used in experiment
1. (C) The target moved randomly according to a Brownian process in a dynamic noise field. Participants were instructed to use the mouse
cursor to continuously track the center of the target. The blue and red lines represent the example trajectories of the target and mouse
cursor, respectively. In the actual experiment, the blue and red lines were not visible. (D) The horizontal components of the trajectories for
the target (blue) and cursor (red) are plotted against time, respectively. (E) The vertical components of the trajectories for the target (blue)
and cursor (red) are plotted against time, respectively. (F) The tracking kernel function is calculated as the cross-correlation between the
displacements of the target and mouse cursor. The peak, latency, and width of the kernel estimated from the best-fit five-parameter model
(Equation (1)) are shown. (G) The two-interval forced-choice motion detection task used in experiments 2 and 3. In this demonstration, the
randomly moving target is presented in the first interval. The blue trajectory is for illustration only and was not visible in the experiment.
The target duration was set to 150 ms in experiment 2 and 500 ms in experiment 3.

the center of the screen, and the motion stimulus always
started from the center. The stimulus duration was 150 ms.
It has been reported that the temporal integration of the
human visual system for motion detection is between 100
and 200 ms.44–47 The background noise field, which was
the same as that in experiment 1, was presented through-
out the entire trial. The target for tracking displacements
was also the same as that in experiment 1. The random
walk speed was drawn from a Gaussian distribution with
a mean of 0 and standard deviation of 0.02°. The displace-
ment of the 150-ms (eight-frame) random walk was 0.07°
± 0.037° on average, ranging from 0.001° to 0.25°. This
value is within the magnitude of fixation error reported in
normal and amblyopic people.48 The dynamic noise field
and the randomly walking stimulus were both updated every

16.7 ms. The target contrast was set to an individual’s thresh-
old for the 150-ms motion detection.

In experiment 3, the stimulus in the 2IFC motion detec-
tion task was exactly the same as that in experiment 2,
except the random walk motion duration was set to 500 ms.
The stimulus with a longer duration in the 2-IFC task was
more similar to that in the tracking task, which enabled the
observer to freely follow the moving target.

Procedure

The participants performed all tasks in the study using either
their amblyopic eye (for the amblyopic patients) or the
nondominant eye (for the normal participants). In case of
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bilateral amblyopia, the eye with inferior visual acuity was
chosen.

In the quick CSF test, the visual stimulus was a 133-ms
sinewave grating of various spatial frequencies oriented
+45° or −45° from vertical. In each trial, the quick CSF
procedure selects the most informative stimulus by leverag-
ing the information-theoretic framework and estimates the
posterior distribution of the CSF based on the response.
More details about the quick CSF procedure can be found
elsewhere.39 The individual CSF and group average CSF can
be found in Figures C1 and C2, Appendix C, respectively.

In experiment 1, each participant completed a single
session of 120 tracking trials, with 20 trials for each
target size. Trials with different target sizes were inter-
mixed randomly. One session took about 50 minutes to
finish. Before each tracking trial, the red mouse cursor was
presented at the center of a blank display. The trial was
initiated by a mouse click. There was a brief tone signal-
ing the beginning of tracking. Participants were asked to
track the center of the Gaussian target with the mouse cursor
as closely as possible for 20 seconds. The horizontal and
vertical coordinates of the target and mouse were recorded
every 16.7 ms. There were 1,200 samples of data generated
in each trial. The participants were given a short break every
20 trials.

In experiments 2 and 3, the Weber contrast threshold
for the random walk motion detection for each participant
was first measured using the 2IFC motion detection task. In
each trial, there were two successive intervals, separated by
500 ms (Fig. 1G). Each interval began with a brief tone and
a 133-ms presentation of a red central fixation point. Then a
stimulus display was preceded by a 200-ms blank display. In
each interval, there was either a static or a randomly walk-
ing Gaussian. The stimulus duration was set to 150 ms in
experiment 2 and 500 ms in experiment 3. Participants were
asked to indicate which interval contained a “moving” target
using the keyboard. A new trial started 333.3 ms after the
observer’s response. A 3-up, 1-down staircase procedure49

with 80 trials was used to measure the threshold. A brief
sound was played after a correct response. After threshold
measurement, the participants completed 30 tracking trials.
The target size was set to 11 arcmin, and the contrast was set
to an individual’s threshold in experiments 2 and 3, respec-
tively.

All participants were given a few practice trials before the
experiment to make sure they fully understood the task.

Data Analyses

To quantify the tracking performance, the displacement of
the target and mouse cursor at each sampling time point was
first calculated as the first-order derivatives of the coordi-
nate data. Then, the cross-correlation between the displace-
ment of target and that of the mouse cursor was calcu-
lated to obtain the kernel function for tracking (Fig. 1F).
Considering the observer as a linear system with the target
displacement as input and the mouse response as output,
the cross-correlation between the displacements of the target
and mouse is the impulse response function or the kernel of
the system,24,28,33,50 which can fully characterize the system.
In a single trial, the horizontal and vertical components of
the trajectory data were separately analyzed (Figs. 1D, 1E).
There was no significant difference found between the hori-
zontal and vertical tracking kernel functions, so they were
treated equally and averaged in later analysis.

To further quantitatively describe the tracking kernel
function, a five-parameter (a, μ, σ 1, σ 2, f) skewed Gabor
was fitted to the cross-correlation curve:

kernel (t ) =
⎧⎨
⎩
a · exp

(
− (t−μ)2

σ 2
1

)
· sin (

2π f t
)
, if t < μ

a · exp
(
− (t−μ)2

σ 2
2

)
· sin (

2π f t
)
, if t ≥ μ

, (1)

where a and μ represent the peak and the time correspond-
ing the peak, respectively, and σ 1 and σ 2 represent the
standard deviation for the left-half and right-half Gaussians,
respectively. f together with σ 1 and σ 2 controls the band-
width of the tracking kernel.

Equation (1) provided a good fit for all participants. The
r2 of all participants and in all three experiments is shown
as histograms in Figure D1, Appendix D. The average r2 in
the amblyopic group and normal group was 0.926 ± 0.074
and 0.948 ± 0.053, respectively. The r2s in the two groups
were both greater than 0.9 (both Ps < 0.01).

The peak (the highest point of the curve), latency (the
distance between peak and origin), and width (full width at
half maximum) of the tracking kernel were derived from the
best-fit model (Fig. 1F).

RESULTS

Experiment 1

For each participant, 240 tracking kernels were calculated,
and they are sorted according to the target size and shown
in each panel of Figure 2. Each kernel is displayed in a single
row, with different colors representing different response
amplitudes. The mean kernel functions for different target
sizes are depicted in Figures 3A and 3B for the amblyopic
and normal groups, respectively. The tracking kernel in both
amblyopic and normal participants exhibited a similar char-
acteristic pattern. The response reached the maximum value
after a short delay of the randomwalk onset of the target and
gradually dropped to baseline. As the target size increased,
the kernel responses decreased. At the largest size, some
participants showed very poor performance. Visual inspec-
tion of Figures 3A and 3B suggests the kernel function of the
two groups differed at the smallest target size and became
similar at the largest target size.

The parameters of the tracking kernels between the two
groups were compared. The peak reflects the system sensi-
tivity to the location change of the target and the track-
ing accuracy. The latency represents the time at which
the response reaches maximum and is equivalent to the
response time. Also, the width reflects the sensory and motor
noises.33,51

The peak of the tracking kernel is plotted as a function
of target size for the two groups in Figure 4A, along with
the latency in Figure 4B and width in Figure 4C, respec-
tively. Repeated-measures analysis of variance showed that
there was a significant effect of target size on the peak
(F(1.649, 46.170) = 200.958, P = 4.420 × 10−22). The peak
decreased as the target size increased. No significant effect
of group was found (F(1, 28) = 2.599, P = 0.118). However,
the interaction between group and target size was significant
(F(1.649, 46.170) = 6.205, P = 0.007). At the target size of
11 arcmin, the peak in the amblyopic eye was significantly
lower than that in the normal eye (0.089 ± 0.023 [mean ±
SD] vs. 0.107 ± 0.020; t(28) = –2.390, P = 0.024). At the
target size of 13 arcmin, the peak in the amblyopic eye was
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significantly lower than that in the normal eye (0.084 ± 0.028
vs. 0.103 ± 0.017; t(23.278) = –2.296, P = 0.031).

The latency increased with the increase in target size
(F(1.232, 34.485) = 107.097, P = 4.090 × 10−13). The group
effect was not significant (F(1, 28) = 0.397, P = 0.534),
nor was the interaction between group and size (F(1.232,
34.485) = 1.266, P = 0.278). Similarly, the kernel width also
increased as the target size got larger (F(1.393, 38.998) =
54.388, P = 2.529 × 10−10). No significant effect of group
(F(1, 28) = 0.115, P = 0.737) or the interaction between
group and size (F(1.393, 38.998) = 1.133, P = 0.314) was
found. The statistical analyses confirmed our visual inspec-
tion in Figures 2 and 3.

The area under the log CSF (AULCSF) and the log cutoff
spatial frequency (cutSF) were derived from the CSF for each
participant. The AULCSF in the amblyopic eyes was signifi-
cantly lower than that in the normal eyes (2.764 ± 0.539 vs.
3.115 ± 0.246; t(28) = –2.293, P= 0.030). Similarly, the cutSF
in the amblyopic eyes was lower than that in the normal eyes

(1.297 ± 0.217 vs. 1.586 ± 0.143; t(28) = –4.319, P = 1.775
× 10−4).

Correlation analyses showed that for the amblyopic eyes,
the kernel peak at the target size of 11 arcmin signif-
icantly correlated with AULCSF and cutSF (both Ps <

0.05, Figs. 5A, 5B). The correlation between the peak and
VA was not significant (Fig. 5C). There was no significant
correlation found between the kernel peak and AULCSF or
between the kernel peak and cutSF in the normal group
(both Ps > 0.05). However, when the data in the two groups
were pooled together, the correlations were significant (both
Ps < 0.05).

In experiment 1, we found that (1) the tracking perfor-
mance was modulated by the location uncertainty of target,
(2) the tracking performance in the amblyopic eye was
worse than that in the normal eye at 11 arcmin as evidenced
by the lower peak of the kernel, and (3) the peak corre-
lated with the CSF in the amblyopic group. The next ques-
tion, then, is whether the tracking performance in the
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FIGURE 6. The tracking kernels at the target size of 11 arcmin for each participant in experiment 2. Each tracking kernel is displayed as a
row of pixels with color varying along the horizontal axis (time).

amblyopic eye is still worse than that in the normal eye,
when the visual input is equalized at individual’s threshold
level.

Experiment 2

The motion detection threshold of the amblyopic and
normal groups was 0.217 ± 0.092 and 0.158 ± 0.052, respec-
tively. The threshold in the amblyopic group was signifi-
cantly higher than that in the normal group (t(28) = 2.193,
P = 0.037). The tracking kernels of each participant are
shown in each panel of Figure 6, and the mean kernel
function in the amblyopic and normal groups is plotted in
Figure 7A. The peak in the amblyopic group was found
significantly lower than that in the normal group (0.070 ±
0.019 vs. 0.087 ± 0.019, t(28) = –2.425, P = 0.022, Fig. 7B).
Compared to that in the normal group, the tracking kernel
in the amblyopic group also showed a longer latency (0.507
± 0.083 vs. 0.432 ± 0.073, t(28) = 2.647, P = 0.013, Fig. 7C)
and broader width (0.552 ± 0.159 vs. 0.412 ± 0.144, t(28)
= 2.540, P = 0.017, Fig. 7D). In addition, no correlation
between the kernel peak and AULCSF, cutSF, or VA was
found, suggesting that the visibility of the target was well
controlled as intended (Fig. 8).

The result in experiment 2 indicates that the tracking
performance in the amblyopic eye remained impaired, even
when the visual input was equalized to individual’s thresh-
old level.

Experiment 3

In experiment 3, the participants were asked to track the
target at the individual’s threshold for a 500-ms random
walk motion. The motion detection threshold of the ambly-
opic and normal groups was 0.115 ± 0.046 and 0.106
± 0.037, respectively. The threshold of a 500-ms duration
in amblyopic patients was significantly lower than that of
150 ms (0.115 ± 0.046 vs. 0.268 ± 0.110, t(6) = –3.692,
P = 0.010) found in experiment 2. There was no difference
in the threshold found between two groups (t(12) = 0.387,
P = 0.705).

The tracking kernels of each participant are shown in
each panel of Figure 9, and the mean kernel function in the
amblyopic and normal groups is plotted in Figure 10A. The
peak in the amblyopic group was found significantly lower
than that in the normal group (0.061 ± 0.022 vs. 0.098 ±
0.015, t(12) = –3.687, P = 0.003, Fig. 10B). Compared to that
in the normal groups, the tracking kernel in the amblyopic
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group also showed a longer latency (0.551 ± 0.128 vs. 0.394
± 0.048, t(12) = 3.032, P = 0.010, Fig. 10C) and broader
width (0.584 ± 0.190 vs. 0.320 ± 0.080, t(12) = 3.388, P
= 0.005, Fig. 10D). In addition, no significant correlation

between the tracking kernels and AULCSF was found, again
suggesting that the visibility of the target was well controlled
as intended (Fig. 11). The result of experiment 3 was exactly
the same as that of experiment 2.
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DISCUSSION

In this study, by adopting a continuous tracking
paradigm24–27 and systematically manipulating visual input,
we investigated whether the observed visuomotor deficit in
amblyopia was due to the impaired vision only or might
also involve other deficits. Participants were instructed to
continuously track a randomly walking Gaussian target
with a computer mouse. In experiment 1, the tracking
performance of both amblyopic and normal participants

was measured at six different target sizes. After showing
the validity of the continuous tracking paradigm, we further
measured the tracking performance at an individual’s
threshold level for the two groups in experiment 2 and
experiment 3.

The Continuous Tracking Paradigm

The conventional psychophysical experiment has discrete
trials with a well-separated trial structure (i.e., stimulus
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presentation phase and response collection phase). It typi-
cally collects one response in a trial and needs hundreds
or thousands of trials to evaluate the human performance
(the percentage correct or d′). In contrast, the continuous
tracking paradigm has a long stream of dynamic stimuli
with simultaneous response collection and thus is capable
of collecting multiple responses within a second.24–27,33,50 It
has been shown that the continuous tracking paradigm can
provide the psychophysical measure equivalent to that in
a conventional trial-based paradigm24,26 with similar preci-
sion but in a shorter time (120 tracking trials vs. 4860
discrete trials).24 In addition, the continuous tracking task
is more natural compared to the repetitive conventional
trials because our daily visual tasks such as driving or look-
ing for a familiar face in the crowded street are rarely
discrete. Instead, human perception and behavior involve
continuous integration and synthesis of visual input, sensory
processing, cognitive decision, and motor execution over
time.25,52

The high-throughput stimulus–response data series
generated by the continuous tracking paradigm allowed us
to apply cross-correlation to study human tracking in a
more rigorous manner.24,25,33,53 Cross-correlation has been
widely used in the analysis of neural data to reveal the
neuron receptive fields in physiology.28,30–32 It has also been
employed to uncover the spatiotemporal weighting func-
tions of sensory processes in psychophysics, such as orienta-
tion tuning,33,54 disparity tuning,55 perceptual template,56,57

eye movement,50 and face recognition.51,58 Compared with
conventional psychophysical measures, the results from the
continuous tracking paradigm have more detailed dynamics
across the space/feature/time domain. We characterized the
tracking performance by the tracking kernel, calculated as
the cross-correlation between the target and mouse displace-
ments. The kernel function represents how the system is
influenced by preceding dynamic sensory stimuli, or how
the observer responds to the previous target displacement
at each time point. With the tracking kernel, we quantified
the tracking performance for both amblyopic and normal
participants with three parameters: the peak, latency, and
width. The continuous tracking paradigm with the cross-
correlation analysis provides a very convenient and powerful

tool to study human behavior and underlying mechanisms,
especially in clinical populations.

The Tracking Deficits in Amblyopia

During tracking, the observer performance was determined
by the ratio between the internal representations of the step
size (0° ± 0.02°) of the random walk and the uncertainty
of target location, similar to how signal-to-noise ratio (d′)
affects performance in signal detection theory (see Fig. B2,
Appendix B). In experiment 1, we measured the tracking
performance with different uncertainty of target location.
This design is very similar to the external noise paradigm,
which measures an observer’s threshold at different exter-
nal noise levels.59 The characteristics of the threshold versus
external noise contrast function are well established. When
the external noise is low, the observer threshold is deter-
mined by the internal noise of the observer, while when the
external noise is high, the threshold is determined by the
external noise.60–62

At the smallest target size with the lowest location uncer-
tainty, the tracking performance depended on the internal
noise of the visual system. Because the amblyopic visual
system was known to have greater internal noise60,61 or
larger spatial uncertainty63,64 than the normal visual system,
the tracking performance of the amblyopic participants was
poorer than that of normal observers at the smallest target
size (uncertainty). At large target size, the visual system was
dominated by the external location uncertainty, which was
the same level for both groups, so the amblyopic and normal
observers showed comparable performance at the largest
target size.

The tracking performance in the amblyopic group was
highly correlated with their spatial contrast sensitivity func-
tion, especially at a high spatial frequency. Tracking the
small step size (0° ± 0.02°) of the random walk would
involve high-frequency channels. It has been reported that
the internal noise increases with the spatial frequency,65

and the increase is even greater in the amblyopic visual
system compared to the normal visual system.61 Together,
the tracking kernel, estimated using the continuous tracking
paradigm, effectively captured both the external uncertainty
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of the visual input and the internal uncertainty of the visual
system. These findings confirm that the continuous track-
ing paradigm is a valid tool for evaluating visual tracking
performance.

By analyzing the hand movement recorded with an
infrared camera, people have found that amblyopic chil-
dren and adults exhibit prolonged movement execution time
and a higher error rate when grasping objects in the real
world.17,19,66 Melmoth et al.66 also found a significant corre-
lation between the grip application time and stereoacuity,
suggesting that the visuomotor deficits in amblyopia arise
from dysfunction of dorsal stream areas involved in process-
ing disparity information.67–69 In our study, both amblyopic
and normal participants tracked a two-dimensional target
moving in the frontoparallel plane monocularly. At the small-
est target size, the tracking performance in the amblyopic
eye highly correlated with the AULCSF as well as the cutoff
frequency. It indicates that the tracking deficits in amblyopia
are related to the impairment of sensitivity loss in the ambly-
opic eye, especially at high spatial frequencies. The results
in experiment 1 extend previous findings and suggest that
visual processing impairments, not just abnormal stereopsis,
contribute to the observed deterioration in tracking perfor-
mance for the amblyopic eye.

It has been reported that the temporal integration of the
human visual system for motion detection is over about 100
ms44–47 and is longer when the stimulus speed is slower
(up to 200 ms at 0.5 deg/s).45,46 We thus chose 150 ms for
the duration of the minimovie in experiment 2. However,
these results were based on normal people. There was a
mixed report on motion integration in amblyopia.15,70,71 It
is possible that 150 ms is not a good choice for amblyopia.
Moreover, the 150-ms duration was shorter than the saccade
latency72 and did not allow eye movement. In contrast, the
observer was allowed to move their eye to follow the target
during tracking. To address the mismatch in eye movement
between the 2IFC motion detection and tracking, we used a
500-ms random walk stimulus In experiment 3. The stimu-
lus with a longer duration in the 2IFC task was more similar
to that in the tracking task, which enabled the observer to
freely follow the moving target. The results were the same
as those in experiment 2.

Experiments 2 and 3 revealed that even when
stimulus visibility was equated, amblyopic participants
still displayed significantly poorer tracking performance.
Notably, no significant correlation existed between the
CSF and the kernel peak. There must be other deficits
that contributed to the poorer tracking performance in
amblyopia.

It has been reported that the amblyopic visual system
is associated with an increased level of equivalent intrinsic
blur,73,74 which could result in elevated spatial resolution or
location uncertainty. Moreover, studies have shown that even
when stimulus visibility was accounted for, the spatial uncer-
tainty was greater in amblyopic eyes than nonamblyopic
eyes, or normal eyes for targets.63,73,74 Therefore, it is possi-
ble that the greater intrinsic blur in the amblyopic visual
system74,75 affected the observed tracking performance in
our study.

On the other hand, Hess and Holliday11 found that
the spatial localization deficits in the anisometropic ambly-
opes (as were most of our amblyopic participants) can be
explained by the contrast sensitivity deficit. In this case,
deficits in brain areas beyond the visual cortex could play a
role in the impaired tracking in amblyopia.

Besides visual perception, the visuomotor control
involves other essential and complex processes,76 includ-
ing automatic programming for the timing and metrics of
the movements of the skilled implementation, monitoring,
and online correction of movement for precise control. A
motor plan is generated prior to the onset of movement
based on the intrinsic property (i.e., size, mass) of the target
gathered from vision or other sensory modalities. Our find-
ing suggests that an additional deficit, likely located down-
stream of the visual cortex, contributes to the impaired
tracking performance observed in amblyopia. This aligns
with previous findings by Niechwiej-Szwedo et al.,77 who
demonstrated that amblyopic patients exhibited significantly
poorer performance in reaching movements compared to
normal participants with artificially induced monocular blur
and concluded that the decreased visual tracking perfor-
mance in amblyopic patients cannot be solely attributed to
a loss of visual acuity. Additional studies on reaction time
in amblyopic patients78,79 also suggest the presence of a
postsensory delay in visual tasks, possibly originating from
higher-level brain regions affected by amblyopia. The intra-
parietal and parietofrontal networks are believed to receive
the information from the visual cortex and transform it into
the action commands.80 The tracking deficit observed in
experiments 2 and 3 could be a result of the disturbed assem-
bly of motion plans in individuals with amblyopia.

An ongoing motor plan is also updated continuously
by integrating the sensory inflow and the motor outflow
to evaluate the consequences of the motor commands for
precise movement control. In our experiment, the observer
was required to keep monitoring the subtle displacement of
the target and moving the mouse to minimize the distance
between the target’s location and the cursor. The track-
ing deficit found in experiments 2 and 3 might also reflect
the impaired online control in the amblyopic visual system.
Niechwiej-Szwedo et al.19 speculated that an amblyopic
patient’s ability to engage in online control is impaired,
making it less effective in correcting the potential trajec-
tory errors, because they observed that the participants with
amblyopia exhibited a different strategy in grasping with a
lower peak acceleration. The posterior parietal cortex (PPC)
is essential in the sensorimotor transformations and online
control that underlie visually guided reaching.21,81–83 Rest-
ing state magnetic resonance imaging studies found abnor-
mal spontaneous activity in PPC in amblyopic patients.84,85

Thus, experiments 2 and 3 suggest that the deficits in the
PPC may contribute to their impaired tracking performance.

In conclusion, we found that the tracking performance
was significantly poorer in the amblyopic participants than
in normal people, even when the stimulus visibility was
equated for the two groups. The result suggested that
besides contrast sensitivity deficits, other deficits contributed
to the decreased tracking performance in amblyopia. Our
study also demonstrated that the continuous tracking
paradigm could provide a useful tool for investigating the
tracking performance in clinical populations.
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APPENDIX A: PARTICIPANT INFORMATION

TABLE A1. Characteristics of the Amblyopic Participants

No. Sex Age Type Correction SA VA Treatment Experienced

A1 M 29 Aniso +4.75DS 200 0.32 Refractive correction, patching, vision therapy Yes
+3.00DS 0.3

A2 F 27 Aniso –2.50DS/–0.50DC × 42° 200 –0.1 Refractive correction Yes
+2.25DS/–0.25DC × 175° 0.2

A3 M 29 Isoam +6.50DS/–2.00DC × 5° 200 0.25 Refractive correction No
+7.00DS/–2.00DC × 170° 0.23

A4 M 18 Aniso Plano 400 –0.1 Refractive correction, patching, vision therapy Yes
+3.25DS/–0.75DC × 165° 0.1

A5 M 30 Aniso –7.00DS/–0.75DC × 135° 400 0.4 Refractive correction Yes
–5.00DS/–0.75DC × 58° 0.0

A6 M 25 Aniso –1.75DS/–0.50DC × 160° 200 –0.1 Refractive correction, patching Yes
+2.75DS/–1.50DC × 167° 0.4

A7 M 19 Aniso –8.25DS/–2.50DC × 8° 400 0.0 Refractive correction Yes
–0.25DS/–2.50DC × 174° 0.6

A8 F 22 Aniso +0.25DS/–0.25DC × 65° 200 0.0 Refractive correction, patching, vision therapy No
+2.25DS/–0.25DC × 35° 0.5

A9 M 25 Aniso –0.75DS NA 0.0 Refractive correction No
+1.00DS/–3.00DC × 160° 0.2

A10 F 26 Aniso +1.50DS NA 0.2 Refractive correction, patching Yes
–1.50DS 0.0

A11 F 19 Aniso –2.00DS NA –0.1 Refractive correction, patching, vision therapy Yes
+3.00DS 0.2

A12 F 29 Aniso Plano 200 0.0 None Yes
+1.75DS 0.2

A13 F 23 Aniso –2.50DS 80 –0.1 Refractive correction, patching, vision therapy Yes
+2.00DS 0.2

A14 M 29 Aniso +4.00DS 400 0.42 Refractive correction Yes
+2.25DS 0.1

A15 M 24 Aniso –4.50DS 200 –0.1 Refractive correction, patching Yes
+5.50DS 0.4

A16 F 31 Aniso +3.75DS/–1.50DC × 155° 400 0.5 None Yes
–0.50DS 0.0

A17 F 24 Aniso –1.00DS/–0.50DC × 90° NA 0.0 Refractive correction, patching, vision therapy Yes
+1.75DS/–1.75DC × 65° 0.2

A18 M 22 Aniso +3.50DS/–1.25DC × 10° 200 0.3 Refractive correction, patching No
+1.25DS/–0.75DC × 172° –0.1

A19 M 24 Aniso –1.00DS 400 –0.1 Refractive correction, patching Yes
+4.75DS 0.6

A20 M 31 Aniso +1.75DS/–1.75DC × 159° NA 0.3 None No
+3.25DS/–3.00DC × 29° 0.4

A21 M 27 Isoam +6.25DS/–2.50DC × 150° NA 0.1 Refractive correction Yes
+6.50DS/–3.75DC × 17° 0.3

A22 F 28 Aniso –0.50DS 400 –0.1 Refractive correction, patching Yes
+4.50DS/–0.75DC × 100° 0.5

A23 M 29 Aniso +1.25DS/–0.75DC × 10° 400 0.4 Refractive correction, patching Yes
–5.00DS –0.1

A24 M 27 Aniso –1.00DS 200 –0.1 Refractive correction, patching Yes
+2.50DS/–0.50DC × 30° 0.5

A1–A15 participated in experiment 1; A2, A3, A5, A6, A7, A8, A12, A13, A14, and A16–A21 participated in experiment 2; and A2, A3, A5,
A6, and A22–A24 participated in experiment 3. Treatment includes refractive correction, patching, and vision therapy. Aniso, anisometropia;
Isoam, isoametropic; NA, not measured; SA, stereoacuity in arcmin; VA, visual acuity in logMAR.
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TABLE A2. Characteristics of the Normal Participants

No. Sex NDE Age Correction SA VA Experienced

N1 F RE 25 –3.75DS 40 –0.1 Yes
–3.75DS –0.1

N2 M RE 24 –0.75DS/–0.25DC × 90° 40 –0.1 Yes
–0.50DS/–0.50DC × 90° –0.1

N3 F RE 26 –3.25DS/–0.50DC × 180° 40 0.0 Yes
–4.00DS 0.0

N4 F LE 28 –4.00DS 40 –0.1 Yes
–3.25DS 0.0

N5 M RE 25 –3.00DS/–0.75DC × 8° 40 0.0 Yes
–2.25DS/–0.75DC × 4° 0.0

N6 F LE 28 Plano 40 –0.1 No
–0.25DS 0.0

N7 F LE 25 –3.00DS 40 –0.1 Yes
–3.00DS –0.1

N8 M LE 25 –3.25DS 40 0.0 Yes
–3.25DS/–0.50DC × 15° 0.0

N9 M LE 24 –1.00DS/–1.00DC × 90° 40 0.0 Yes
–1.25DS/–0.75DC × 80° 0.0

N10 F LE 23 –3.50DS 40 0.0 Yes
–3.00DS 0.0

N11 F RE 25 –2.75DS 40 0.0 Yes
–3.25DS 0.0

N12 F LE 23 –2.00DS 40 –0.1 Yes
–1.50DS –0.1

N13 F LE 25 –0.50DS 40 0.0 Yes
–1.00DS 0.0

N14 M LE 24 –0.75DC × 88° 40 0.0 No
–0.75DS/–0.25DC × 84° 0.0

N15 F LE 28 –4.50DS 40 –0.1 Yes
–4.25DS 0.0

N16 F LE 26 –1.00DS 40 –0.1 Yes
–1.75DS –0.1

N17 M RE 30 –3.75DS 40 0.0 Yes
–3.50DS/–0.50DC × 170° 0.0

N18 M LE 23 –4.50DS/–0.25DC × 30° 40 0.0 Yes
–4.25DS/–0.25DC × 165° 0.0

N19 F RE 28 –1.00DS/–1.00DC × 77° 40 0.0 Yes
–1.00DS/–0.50DC × 140° 0.0

N20 F LE 26 Plano 40 –0.1 Yes
Plano –0.1

N21 F RE 29 –3.50DS/–0.75DC × 40° 40 –0.1 Yes
–4.00DS –0.1

N22 M LE 28 +0.50DS 40 0.0 Yes
–0.75DS/–0.25DC × 100° 0.0

N1–N15 participated in experiment 1; N2–N6, N9, and N14–N22 participated in experiment 2; and N2, N3, N5, N15, N18, N19, and N22
participated in experiment 3. LE, left eye; NDE, nondominant eye is the test eye; RE, right eye; SA, stereoacuity in arcmin; VA, visual acuity
in logMAR.
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APPENDIX B: THE SPECTRUM AND LOCATION UNCERTAINTY OF THE STIMULUS
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FIGURE B1. The amplitude spectrum of the target at different sizes is plotted in different colors. Vertical dashed lines indicate the spatial
frequency that corresponds to the half of the maximum amplitude for each size.
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FIGURE B2. The cross sections of the target at two consecutive locations during random walk (t frame and t + 1 frame). The luminance of
the target was varied with its size so that the luminous flux (the volume under the Gaussian) was constant for all target sizes. The observer’s
performance was determined by the ratio between the step size of the random walk and the uncertainty of the target location. This design
used the property that, for Gaussian targets, the probability of the target center being at a specific location is directly proportional to
the luminance value at that location. The constant luminous flux is equivalent to the equal total probability of the Gaussian for all target
conditions. As the target size increases, the tracking becomes more difficult.
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APPENDIX C: CSF DATA OF PARTICIPANTS
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FIGURE C1. CSF of each participant. The AULCSF and cutSF are also shown for each participant. Red: amblyopic participants; blue: normal
participants.
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FIGURE C2. The average contrast sensitivity functions of the amblyopic and normal groups in experiment 1 (A), experiment 2 (B), and
experiment 3 (C) are shown in separate panels. Red and blue curves represent the amblyopic and normal groups, respectively. Shaded areas
represent ±1 standard error.

APPENDIX D: THE GOODNESS OF FIT OF THE TRACKING KERNEL
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FIGURE D1. The histogram of the r2 of the best-fit model pooled over three experiments for the amblyopic (red) and normal groups (blue).
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