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The promise of artificial intelligence in understanding
biological vision relies on the comparison of
computational models with brain data with the goal of
capturing functional principles of visual information
processing. Convolutional neural networks (CNN) have
successfully matched the transformations in hierarchical
processing occurring along the brain’s feedforward
visual pathway, extending into ventral temporal cortex.
However, we are still to learn if CNNs can successfully
describe feedback processes in early visual cortex. Here,
we investigated similarities between human early visual
cortex and a CNN with encoder/decoder architecture,
trained with self-supervised learning to fill occlusions
and reconstruct an unseen image. Using
representational similarity analysis (RSA), we compared
3T functional magnetic resonance imaging (fMRI) data
from a nonstimulated patch of early visual cortex in
human participants viewing partially occluded images,
with the different CNN layer activations from the same
images. Results show that our self-supervised
image-completion network outperforms a classical
object-recognition supervised network (VGG16) in terms
of similarity to fMRI data. This work provides additional
evidence that optimal models of the visual system might
come from less feedforward architectures trained with
less supervision. We also find that CNN decoder
pathway activations are more similar to brain processing
compared to encoder activations, suggesting an
integration of mid- and low/middle-level features in
early visual cortex. Challenging an artificial intelligence
model to learn natural image representations via
self-supervised learning and comparing them with brain
data can help us to constrain our understanding of

information processing, such as neuronal predictive
coding.

Introduction

Investigating the functional dichotomy of forward
and backward pathways in the visual system is
necessary for describing how the brain performs vision.
The conceptual divergence is broadly understood;
forward pathways carry unlabelled sensory information
into the brain while feedback pathways carry signals
from higher visual and nonvisual areas back to earlier
areas (Pennartz et al., 2019), in the opposite direction
to sensory information. Feedback has an important
role in the contextual modulation of the feedforward
stream, carrying top-down signals such as attention and
expectations (Van Essen & Anderson, 1995; Gilbert &
Li, 2013; Roelfsema & de Lange, 2016; Takahashi et al.,
2016; Angelucci et al., 2017; Klink et al., 2017; Morgan
et al., 2019; Pennartz et al., 2019). Neuronal information
processing in visual perception can be formalized as
a statistical inference based on hierarchical internal
models, which can theoretically be implemented by
schemes such as predictive coding (Rao & Ballard, 1999;
Friston, 2005). Predictive processing is a compelling
framework for describing the neural phenomena
observed in human primary visual cortex using brain
imaging (Alink et al., 2010; Edwards et al., 2017).
Predictive coding describes a neuronal coding process
in which predicted information from top-down streams
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is explained away from the feedforward stream (e.g.,
Rao & Ballard, 1999). Less narrow implementations
of predictive coding recognize the necessity of the
feedforward stream to not only compute prediction
error, but also to communicate information that
reinforces the internal models that were successful in
predicting incoming information (Rao & Ballard, 1999;
Shipp, 2016). We use the term predictive processing to
allow for an even broader implementation of coding
principles, including those that provide context (e.g.,
contour ownership, spatial information from auditory
cues) without being limited to predicting a narrow
set of precise features (e.g., a specific contour). For
example, illusions of motion increase activity on the
nonstimulated motion path in the primary visual cortex
(Chong et al., 2016; Erlikhman & Caplovitz, 2017),
and predictable stimuli presented on the motion path
cause less activity than surprising stimuli (Alink et al.,
2010; Edwards et al., 2017). Moreover, visual contours
predicted by flanking stimuli increase activity along
the illusory contour (Kok et al., 2016; Bergmann et al.,
2019). These data reveal that some neuronal activity in
early visual areas is not directly related to retinotopic
sensory inputs, but rather to the brain’s inference of
the world, transmitted in cortical feedback pathways to
earlier areas. A comprehensive biologically constrained
artificial model of vision should account for this
top-down brain processing.

In computational neuroscience, there is a tradition
to exploit recent developments in statistical modeling
and algorithms to develop more sophisticated models
of visual processing (Simoncelli & Olshausen, 2001). In
this respect, recent developments in artificial intelligence
(AI), and in particular deep learning (DL), offered
significant contributions in the last decade (Hassabis
et al., 2017), showing promising results in the attempt
to improve our understanding of visual counterstream
computations (Kietzmann et al., 2019; Qiao et al., 2019).
In the DL field, and more broadly in AI, a textbook
categorization in the literature is the distinction
between supervised and unsupervised learning; while
the first learns statistical representations based on
labelled datasets, including tasks such as classification,
regression, and segmentation, the latter tries to extract
features and inherent patterns from unlabelled data,
with tasks such as clustering, anomaly detection, and
dimensionality reduction (Hastie et al., 2009). Whereas
supervised learning usually allows to obtain good
performance in a predefined task, being able to make
sense of the large amount of unlabelled data often
available is a promising and exciting goal for the field. In
this respect, the recent trend of self-supervised learning
tries to use the data as a supervision strategy (Jing &
Tian, 2020); the idea is to challenge the model to solve
a specific unrelated task to learn representations of
the data that can be later applied to solve supervised
tasks, such as object classification or to automatically

label the dataset. Examples include learning to predict
some part of the image from other parts, predicting
relative locations of two image patches, solving a
jigsaw puzzle, and colorizing an image. Originally
designed as unsupervised methods, in generative
adversarial networks (Goodfellow et al., 2014), have
proven successful in supervised and reinforcement
learning tasks; in generative adversarial networks, a
discriminator is trained by evaluating whether the data
created by a generator is part of the training data (i.e., is
a real image) or not (fake). Despite their great promise
in understanding data, unsupervised learning methods
are not often used for model comparisons with brain
data.

Supervised learning models, under the flagship of
convolutional neural networks (CNN), have advanced
our understanding of visual information processing
in the brain in a number of breakthrough studies
(Hassabis et al., 2017). Using this approach to model
spiking computations, CNN models can predict neural
activations in the macaque visual ventral streams at
early time points after stimulus presentation, suggesting
they may capture important aspects of feedforward
visual processing (Yamins & DiCarlo, 2016). Natural
images have been found to cluster together in similar
ways in the internal feature spaces of CNNs as in
human inferior temporal cortex (Khaligh-Razavi &
Kriegeskorte, 2014). Cichy et al. (2016) described
how a CNN captured the stages of human visual
processing in time and space from early visual areas
towards the dorsal and ventral streams. Kay et al.
(2008) and Güçlü and van Gerven (2015) compared
two different encoding models to human functional
magnetic resonance imaging (fMRI) data, one based
on decomposing visual information into Gabor
elements, and the other based on trained feedforward
CNNs. Comparisons showed improved results of the
supervised CNN with respect to the Gabor-based
approach in explaining fMRI activity patterns. Using
decoding modeling, different studies (Eickenberg et
al., 2017; He et al., 2018) proposed to derive CNN
representations from brain data, or they showed how to
improve fMRI-based decoding performance mapping
functional data and CNN features (Svanera et al.,
2019). In a broader effort to validate CNNs as models
of the visual system, networks supervised on image
recognition were used to model differences in retinal
and cortical networks, showing which architectural
constraints help similar representations to emerge in
CNNs as found in the brain (Lindsey et al., 2019). To
better navigate between different object classification
artificial networks, (Schrimpf et al., 2018) introduce
multiple neural and behavioural benchmarks to score
any artificial neural network on how similar it is to
the brain’s mechanisms for core object recognition.
CNNs with recurrent connections better predict visual
responses than feedforward models, and increase our
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ability to capture the cortical dynamics in MEG data
and fMRI data (Kietzmann et al., 2019; Qiao et al.,
2019), opening new opportunities on understanding
visual counterstreams by modeling brain architectures
and processing principles (Hong et al., 2016; Tang et
al., 2018; Kar et al., 2019).

Although these achievements are noteworthy in
terms of being the best available models of biological
vision, the possible impact of unsupervised models
remains comparatively underexplored. As in AI,
unsupervised learning models are promising in terms
of data exploitation and understanding. Furthermore,
in modeling vision we could potentially narrow
the gap created by the biological implausibility of
supervised learning objectives and gain progress in
understanding the role of cortical feedback processing.
In addition, the setting (i.e., the task) in which the
two models, biological and artificial, are compared
could provide a better testbed and bring potential
benefits, such as giving insights on the learning
dynamics or identifying differences with respect to
other tasks. We begin in this direction by comparing
brain data capturing contextual feedback in vision
(in amodal filling-in) to an artificial model trained to
fill-in missing visual information. The human brain
imaging data were recorded from early visual cortex
(V1–V2), and subjects viewed partially occluded natural
scene images (Smith & Muckli, 2010; Muckli et al.,
2015; Revina et al., 2018; Morgan et al., 2019). By
partially masking the visual stimulus and recording
from the corresponding retinotopic region of V1, this
paradigm allows us to study feedback information in
the absence of stimulus-specific feedforward signals.
We use these data as a testbed for investigating a
vision model that includes feedback components.
We selected a visual occlusion paradigm because we
sought comparable functionality between the brain
data and computer vision algorithms performing the
same task. The predictive coding framework suggests
that the brain is trying to reconstruct the image
under the occlusion, using information from cortical
feedback processing to infer the content of missing
image sections. We showed recently that the brain’s
filling of the missing image section can be modelled
as a behavioural line drawing (Morgan et al., 2019).
This operation of reconstructing an unseen image is
conceptually similar to the task of inpainting (also
known as image completion) in computer vision.
In this task, an artificial model predicts the missing
part of the image (unseen or damaged; Pathak et
al., 2016) relying on image statistics learned during
training. This learning can be obtained using different
techniques: with classical image processing techniques,
such as the application of statistically similar patches
(He & Sun, 2014), or with CNN approaches (Isola
et al., 2017; Lempitsky et al., 2018; Yu et al., 2018).
To solve the task of image reconstruction, we used a

CNN with encoder/decoder architecture, trained in
a self-supervised fashion as in Isola et al. (2017), to
perform inpainting on the lower right quadrant that
is, reconstructing the unseen (occluded) portion of the
image (Figure 1A). We compared the encoder/decoder
network trained to solve inpainting with brain data
collected in a previous 3-Tesla fMRI experiment during
the viewing of images with the lower right quadrant
occluded (Figure 1B); see (Morgan et al., 2019). We
investigated similarities between the network and brain
data using representational similarity analyses (RSA,
Kriegeskorte et al., 2008; Nili et al., 2014).

Material and methods

We compared representations of two neural network
models to brain imaging data acquired during an fMRI
experiment. We first describe the fMRI experiment
(see fMRI experiment), before specifying the two CNN
models: the well-known supervised (feedforward)
network VGG16 and our encoder/decoder model
trained to fill the missing quadrant of the image (see
Artificial neural network models). Last, we explain how
we compared the brain data to the CNNs using RSA
(see Data analysis: RSA). The experimental framework
is shown in Figure 1.

The fMRI experiment

Our fMRI dataset was collected previously and
published in Morgan et al. (2019). Eighteen healthy
volunteers with normal or corrected-to-normal vision
participated in this study. Twenty-four real-world
scenes from six categories (beaches, buildings, forests,
highways, industry, and mountains), from the dataset
in Walther et al. (2009) were shown to participants
(Morgan et al., 2019; see Supplementary materials for
stimulation images). Images were displayed in grayscale
on a rear-projection screen using a projector system.
Stimuli spanned 19.5◦ × 14.7◦ of visual angle and were
presented with the lower right quadrant occluded by
a white box (occluded region spanned ≈9◦ × 7◦). A
centralized fixation checkerboard marked the centre
of the scene images. To ensure central fixation and
minimize eye movements, we instructed participants
to respond via a button press to a temporally random
fixation color change (Morgan et al., 2019). Over the
course of the experiment, each image was presented 16
times. Refer to Morgan et al. (2019) for further details.1

Data acquisition
We collected the fMRI data previously at the Centre

for Cognitive Neuroimaging, at the University of
Glasgow. Participants gave written informed consent
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Figure 1. The analysis framework is composed of two parts: the encoder/decoder (artificial) neural network and brain imaging data
collection. (A) The image passed through the network, we extracted activations for one layer, we selected a quadrant at the time, and
we applied PCA transformation to reduce the dimension to 1024 components; we then obtained one 1024-d vector per layer (15), per
quadrant (2), and per image (24). We used these vectors to compute representational dissimilarity matrices (RDMs). (B) fMRI data
were collected from participants while viewing the same images that were fed into the network (in testing) and RDMs computed. We
compared RDMs of the network and brain data (cross-validated; see Walther et al., 2016), for every CNN layer (15 layers analyzed),
human visual area (V1 and V2), and image space quadrant (occluded and nonoccluded quadrants).

to participate, in accordance with the institutional
guidelines of the local ethics committee of the College
of Science & Engineering at the University of Glasgow
(CSE01127). We used EPI sequences to acquire partial
brain volumes aligned to maximise coverage of the
visual pathway (18 slices; voxel size: 3 mm, isotropic;
0.3 mm interslice gap; TR = 1000 ms; TE = 30 ms;
matrix size = 70 × 64; FOV = 210 × 192 mm). We
used retinotopic mapping data (Sereno et al., 1995;
Wandell et al., 2007) to locate the V1 and V2 (polar
angle and eccentricity mapping). Additionally, we
used three flashing checkerboard locations to map
the cortical subregions of V1 and V2 corresponding
with occluded and nonoccluded portions of the visual
field. The first checkerboard was located in the bottom
right visual quadrant (target mapping condition),
the second was located only at the border (surround
mapping condition; extending 2◦ visual angle into
the occluded quadrant) and the third covered the
remaining three quadrants (nonoccluded mapping
condition). We declared cortical subregions that
responded statistically more to the contrast of target

versus surround conditions as occluded, that is, not
stimulated with scene information. In our nonoccluded
condition, the visual field was presented with scene
information, activating the corresponding retinotopic
region of V1 and V2.

Data preprocessing
Functional data passed through different pre-

processing steps; slice time, three-dimensional motion
correction, and temporal filtering (high pass), before
being normalized to Talairach space. We used data
from retinotopic mapping runs to define early visual
areas V1 and V2 using linear cross-correlation of
eight polar angle conditions. To define the regions
of interest corresponding with the nonoccluded and
occluded quadrants, lower left and right image sections,
respectively, we computed population receptive fields
(pRF; Dumoulin & Wandell, 2008) and excluded voxels
whose response profiles were not fully contained (within
2σ of their pRF center) by the respective visual regions
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of interest. The patterns of brain activities we obtained,
which consisted of data from V1 and V2 for each of the
two image quadrants analysed, were not preprocessed
with any dimensionality reduction technique (contrary
to CNN activations that went through a principal
component analysis (PCA) analysis). We discarded
the upper quadrants owing to the visual content of
stimulation images (shown in supplementary). Most of
the images included depict landscapes, and the upper
parts of the images therefore included large portions of
sky (i.e., uniform values).

Artificial neural network models

VGG16: A supervised image classification network
To compare brain data with a supervised network,

we used the VGG16 network (Simonyan & Zisserman,
2014), a well-known model used for comparing visual
pathway activity with CNNs (Güçlü & van Gerven,
2015; Cichy et al., 2016). The network is a supervised
model (Simonyan & Zisserman, 2014) pre-trained
to solve image classification – the task to attribute
an object class label to an image – on the ImageNet
database with 1000 classes (Russakovsky et al., 2015).
The architecture is strictly hierarchical – image-to-labels
— with 16 convolutional layers, and it uses repetitive
and simple base structure made by 3 × 3 convolutional
layers, for a total of ≈138 M parameters. In our
analyses, we used only convolutional layers before
pooling, leading to a total of 5 layers analysed (layers:
conv1_2, conv2_2, conv3_3, conv4_3,
conv5_3).

Encoder/decoder model: A self-supervised image
completion network

Our self-supervised image-to-image model is trained
to reconstruct the occluded image section (always
the lower-right quadrant); it is a fully-CNN, with a
encoder/decoder architecture and with skip connections
(known as U-Net and described in Ronneberger et
al. (2015). Details on layer activation dimensions are
shown in Figure 2B. Every layer implements the same
components: a two-dimensional convolution with
a 3 × 3 filter and stride= 2 (that downsamples the
activations, no pooling used), batch normalisation, and
a rectified linear unit (ReLu) function for encoder and
a leaky ReLu2 for decoder. We added padding to keep
the activation dimensions constant after convolution
and adopted dropout during the training to decrease
overfitting.

We trained the network similarly to what has been
proposed in Isola et al. (2017), in which not only
the mapping from input image to output image (i.e.,
network filters) is learned, but also the best loss function

to evaluate (or train) this mapping. The selection
of the learning strategy, and in particular the loss,
is crucial in unsupervised learning, where labels or
categories are not available. Early unsupervised models
adopted custom loss functions hand crafted by the
experimenter; for example, autoencoders use the mean
squared error (MSE) between the original image and
the generated to compute the loss and the relative
gradient. Variational autoencoders (Kingma &Welling,
2013), a combination of autoencoders with statistical
inference, add a term to the MSE loss measuring how
closely the latent variables match specific distributions
(for example, unit gaussian). However, MSE produces
blurry images and VAEs fail to generate good-looking
images because they are not able to parametrise
precisely the complex distributions of images. A
successful approach to overcome the hand-crafted
selection of a loss function is to let the network learn it:
this can be accomplished using conditional generative
adversarial neural networks (Goodfellow et al., 2014).
The training was carried out using images from the
SUN database (Xiao et al., 2010, the same database
where the testing images came from), with occluded
images as input to the network and original images
(without occlusion) as output. We discarded some
images from the database because they were too low
resolution (< 200 × 200 pixels), leading to a total of
≈107, 000 images for the training.3 We trained the
model and its 228M parameters with epochs= 5 and
batch_size= 5 and the training process lasted for ≈49
hours on aGeForce 1080Ti. All the code is implemented
in tensorflow. An overview of the training and testing
procedures is shown in Figure 3 of the Supplementary
material.

We extracted layer activations from both encoder
and decoder streams, as shown in Figure 1 for two
quadrants of the image: lower left (nonoccluded),
and lower-right (occluded). The contractions in the
architecture produce an increase of the CNN RFs as
the layers increase, causing overlaps between quadrants.
To avoid confounding results, we selected only an
area within the quadrants, removing borders between
them. Calculating the RF of the network (see the
Supplementary material for RF sizes), we noted how
after the fifth encoder layer, the RF size (i.e., the region
of the input image which contribute to filter activations)
spanned the entire image, and layers representations
no longer contained spatiotopic activity maps (this
factor was verified displaying activation maps). It
was then not possible to distinguish quadrants by
spatial location, so we decomposed the analysis into
three network sections: the spatial encoder, in which
activations could be split into quadrants; latent feature
vectors, which included activations about the context
only and without the spatial information; and spatial
decoder, with again the concept of spatial separation in
reconstruction.
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Figure 2. Model architecture with layer dimensions. Every layer implements: convolution, batch normalization, and activation
function (leaky relu for encoder and relu for decoder).

Dimensionality reduction of layer activations: PCA
As described next (see Data analysis: RSA, we

performed an RSA) through predictions of similarities
between CNN and early visual cortex representations.
Because layer activations from the CNN have large
dimensions (see sizes in Figure 2B), we applied a
dimension reduction technique to obtain stable and
feasible RSA predictions in terms of variance explained
(avoiding overfitting) and computation time. We
therefore applied PCA to every layer activation of the
set.

To obtain comparable comparisons in the RSA
analysis, we reduced every layer activation to the same
dimension, for every layer analyzed, as done in Cichy
et al. (2016). The dimensionality reduction is learned
randomly by selecting 10,000 images from the training
set, extracting the corresponding activations, learning
the transformation through an incremental PCA (Ross
et al., 2008; Pedregosa et al., 2011), and eventually
applying the transformation on activations extracted
from the testing set. We tested different values for
the number of principal components (within 2n, with
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Figure 3. A schematic overview of the RSA computation.

n = 3, 4, . . . , 10, i.e., 8, 16, . . . , 1024 components), as
reported in Dimensionality reduction: PCA.

Data analysis: RSA

We computed representational dissimilarity matrices
(RDMs) from fMRI data and PCA-reduced CNN
activations using the linear discriminant contrast
method (Walther et al., 2016). For each scene
comparison, we fit models to the RDM of the 22
other scenes in the first set (e.g., runs 1/2 vs. 3/4)
using non-negative least squares (Khaligh-Razavi &
Kriegeskorte, 2014). We repeated this analysis for
all scene comparisons, producing a predicted RDM
based on model parameters, which was then compared
with an RDM produced from the other half of the
dataset (e.g., runs 5/6 vs. 7/8) using Kendall’s Tau, a
rank correlation (Nili et al., 2014). We repeated this
procedure for all 70 possible split-quarter combinations,
and averaged values over splits to produce one
correlation value per subject per region of interest and
model combinations (Morgan et al., 2019). A brief
outline of the computation is shown in Figure 3.

Results

First, we show the visual results of the network
output and a description of what layer activations
represent (sec DNN model training). Then we
show similarity performance which drove the
selection of the number of PCA components (sec

Dimensionality reduction: PCA). Last, we compare
VGG and our encoder/decoder in terms of RSA
and encoder/decoder layers (see Comparison between
VGG16 and encoder/decoder).

DNN model training

A graphical result to demonstrate the quality of the
output of the network is shown in Figure 4 for color
images. However, to create a model that might capture
fMRI brain activation to occluded regions of images,
we trained a network to reconstruct grayscale images
with occlusion. Images used in the experiment were not
part of the training set.

To create a model that might capture fMRI
brain activation to occluded regions of im-
ages, we trained a network to reconstruct
grayscale images with occlusion. Images used
in the experiment were not part of the training
set.

To better understand the processing performed by
the network, we show a selection of stimuli eliciting
maximal activations for every layer of the network
encoder in Figure 5. Patches were obtained as follows:
given activations for a specific channel4 from 10,000
images of the training set, we found the top five
activations (maximum responses for that filter). Starting
from the location of the maximum, we found the
corresponding patch (the RF) in the image space that
caused that activation. In the classical hierarchical
structure of different feedforward networks, such as
VGG16 (Simonyan & Zisserman, 2014), it is possible to
find features from low to high level of complexity. In this
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Figure 4. Model results with the input to the network (occluded images), the original image (i.e., shown here only for graphical
comparisons of input and output with the original image), and the output of the network. Images used in this figure were not part of
the training set. Please notice that images are here shown in colour for displaying purposes only; the comparisons below are made
with activations from a model trained on grayscale images, consistent with the brain imaging experiment.

network, instead, features seem to be more dedicated
to the detection of edges even in the middle and upper
layers. Only in layer encoder_6 to encoder_8 do
features start to become more complex, incorporating
larger areas of the scene.

The functional characterization of these blocks can
be challenging, but a possible interpretation follows.
The model architecture is composed of two branches:
encoder and decoder, also known as contraction and
expansion paths. The encoder takes in an original
image and produces a compressed vector, or latent
variable vector; the decoder takes this vector and
tries to reproduce the original image. The encoder
branch increases, layer by layer, the representation of
“what,” that is, the feature complexity, and decreases

the “where,” that is, the localization of a specific
feature in the image space. In terms of early visual
processing, this is equivalent to compressing retinotopic
features into high-level representations. In contrast, the
expansion path creates a high-resolution image on the
output through a sequence of up-convolutions (that
is, transposed convolution) and concatenation with
high-resolution features from the contracting path, that
is, reconstructs retinotopic features from high-level
representations. We chose a contraction (similar to what
happens with CNNs for object recognition (Krizhevsky
et al., 2012) and an expansion path, to accomplish
increased computational efficiency, rather than learning
a full-size convolutional net, forcing the network to
learn features at different scales (Noh et al., 2015).

Downloaded from abstracts.iovs.org on 04/24/2024



Journal of Vision (2021) 21(7):5, 1–17 Svanera, Morgan, Petro, & Muckli 9

Figure 5. (A) Schematic overview of the method used to visualize layer features: the method identifies, for a given activation layer, the
five maximum unit activations, and visualizes the image region corresponding with the RF of these maximum points. (B) Image
patches obtained for the encoder stream of our network: for every layer of the encoder, two channels are displayed. (C) The same
method is applied to visualize the features within key layers of VGG16 network. These images are randomly selected from a bigger
pool of analysed layers; the remaining are displayed in the Supplementary material.

Dimensionality reduction: PCA
Considering the type of RSA conducted (see Data

analysis: RSA) to avoid overfitting and decrease the
amount of regularization needed, we decreased the
layer activation dimensions to a lower dimension.
Therefore, we applied different numbers of principal
components (8, 16, . . . , 1024), and tested the
performance achieved (in terms of similarity, Figure
6). The results describe the mean and the standard
deviation of similarity across every layer analyzed –
between V1 and CNN layer RDMs – for every number
of components, in terms of Kendall’s tau-a. Results
are averaged across all subjects. The two sections
(i.e., subplots) are nonoccluded and occluded: the
difference is the relative portion of the cortex analysed
through the selection of the correspondent RFs (pRF
analysis). In the nonoccluded section, we analyzed
the corresponding region of retinotopic cortex that
received feedforward stimulation from the image; in the
occluded, the region of cortex that processed only the
occluder.

As expected, with increasing the number of
components, correlations become higher and more
stable for both V1 and V2. Based on this finding,
we kept the number of components equal to 1024.
This strategy allowed us to explain the most possible
variance in CNN layer activations. Note that 1024 is
the maximum reachable number of components, as
it is equal to dimensionality of the smallest layer (see
Figure 2B). All results are reported using this number
of components; results for VGG are here omitted for
brevity, but the same logic is applied.

Comparison between VGG16 and
encoder/decoder

We assessed the ability of the two models to describe
brain data using RSA. The first was VGG16 – a
supervised network designed for image classification.
The second was our encoder/decoder scheme – a model
trained in a self-supervised fashion to fill in an occluded
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Figure 6. Similarity results (between V1 and CNN layer RDMs) for the nonoccluded and occluded quadrants in terms of Kendall’s tau-a.
For every component in the range 2n, with n = 3, 4, ..., 10, we report mean similarity and standard deviation averaged across layers
and subjects.

Figure 7. Kendall’s Tau-a rank correlation between VGG16 (blue) and our model (orange) with visual areas (A) V1 and (B) V2. Every dot
is a CNN layer (5 conv for VGG16 and 15 for encoder/decoder); results are averaged across subjects. We performed a t-test to
determine statistical significance of the difference between the models; results are reported below the bars.

portion of images. In Figure 7, we show VGG16 and
encoder/decoder response similarities with V1 and V2
in terms of Kendall’s Tau-a rank correlation.

Focusing on the occluded quadrant, we observed a
significant difference between VGG16 and our model
[p <= 0.0097] (differences within our model between
encoder and decoder are reported below). This result
shows how our model, trained in a self-supervised
way to perform inpainting, has representations more
similar to the brain data compared with VGG16s, a
trained supervised model for object recognition. In
the nonoccluded area, a cortical region combining
feedforward and feedback processing, we notice a
remarkable increase of similarity between the brain data
and our model. We, therefore, have greater similarity to

brain data with our network representations rather than
VGG16, for both occluded and nonoccluded areas.

Encoder/decoder layers detail
Focusing on our model, we report results for

every layer in Figure 8, analyzing the differences
between encoder (or contraction path) and decoder
(or expansion path) parts. We decompose results
in the three sections, spatial encoder (blue), latent
feature vectors (yellow), and spatial decoder (green), as
described in Encoder/decoder model: A self-supervised
image completion network.

Four plots are shown: the first row displays V1
results, and the second row displays V2; the two
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Figure 8. Comparison between brain and encoder/decoder network RDMs. The first and second columns are different human visual
areas, V1 and V2, respectively. The first and second rows relate to nonoccluded and occluded quadrants. Results are highlighted with
different colours for spatial encoder, latent features, and spatial decoder network sections. Dashed red lines are mean values for the
three sections. Lines below bars show when the encoder and decoder populations difference is significant (Wilcoxon signed rank
test). Grey horizontal shaded region indicates the upper and lower bounds of the noise ceiling, that is, the maximum correlation
possible within this dataset.

columns correspond with nonoccluded and occluded
quadrants. Every bar is an analyzed network layer
and colours highlight the three different network
sections: encoder (blue), latent feature vector (yellow,
with the middle layer in orange), and decoder (green).
The bar indicates the mean value across subjects,
and the error bar the standard error (standard
deviation divided by the square root of the number of
subjects; i.e., 18).

Grouping layers together we can highlight large
differences between sections. As depicted by dashed
lines, decoder layers (which integrate information from
the latent vector space – middle level features – and
the correspondent encoders – lower level features) have
greater and statistically significant similarity to brain
data with respect to encoders. Surprisingly, the latent
feature vector is even higher than decoder, showing the
highest similarity with brain data (see Supplementary
material for statistical test). Analyzing layer by layer,
we notice that progressive encoding layers (blue bars)
have better and statistically significant similarities to
brain activity patterns (see Supplementary materials

for statistical test). Once the encoder is devoid of
retinotopic organisation owing to the absence of spatial
information, there are the latent feature vectors (yellow
bars), which only have context, or higher level features.
With these layers, we have an immediate decrease in
performance with the first layer after the retinotopic
layers, which often follows an increase of similarity.
In particular, it seems that in the occlusion, for V1,
there is a decrease and increase of performance. The
orange bar represents the inner layer activation (higher
level) that in some cases represents the higher activation
among the context layers. This is until the decoder
layers with spatial information (green bars), in which
the network reobtains retinotopic organisation. Here,
there is a statistically significant overall decrease of
similarity (see Supplementary materials for statistical
test), in particular, after an initial increase, there is a
stabilisation of similarity with brain activity patterns.

Interestingly, the first decoder layer is always the
most similar to brain activity patterns. This is the first
retinotopically organized layer after integrating the
context information from latent feature layers. This
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Figure 9. Both subplots show the same RF analysis in two forms: visually and numerically. (A) Visual comparisons of both RFs, CNN
and V1/V2. The dimensions are in scale drawings so that it is possible to visually compare them. The indication of CNN RF sizes are
displayed in parentheses. (B) Variation of fMRI pRF sizes in relation to the distance of the centre of fixation, in both degree and pixel
units, for V1 and V2. Bars indicate the standard error across different subjects. Red lines indicate the first three CNN layer RFs,
constant along eccentricity.

surprising result opens a series of possibilities for
future modeling of brain data from early visual cortex
using deep neural networks, such as using a multiscale
approach or adding more complexity than simple edge
detection to model V1 processing.

RF analysis
We investigated whether there was a relationship

between the size of V1-V2 RFs and encoder/decoder
network RFs. In Figure 9, we show the RF analysis for
(a) the CNN encoder layers and (b) the fMRI 3T data.
RF has here two different meanings, based on the data
on which it refers to. On fMRI data, it specifies the size

of the visual field that each voxel captures; this is why
voxels processing the fovea region have smaller RF size
than the peripheral ones. Instead, in CNNs, every unit
in a convolutional layer only depends – and processes –
a specific region of the input image, called the RF. Note
that every network layer processes the output of the
previous layer, not the original image. In the encoder
branch, because “arriving” skip connections are not
present (only “departing”), every layer elaborates
already processed information because this branch is a
cascade of consecutive layers.

In the Figure 9, we can observe how the RF size
of the fMRI data is increasing from the fovea to the
periphery (we instructed participants in a central
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fixation task during the fMRI experiment), for both
V1 and V2 (range = {3, 16} pixels for V1 (blue) and
{3, 21} for V2 (green)). These data show high similarity
with the RF sizes of the first three network layers
(encoder_1 to encoder_3, respectively 4 to 22
pixels, see Supplementary material for a full list). This
may seem to be in opposition with the results shown
in Figure 8, where the similarity increases going from
encoder_1 to encoder_6. This finding means
that the increase of similarity further in the network
is not due to the matching of the RF sizes, but to
something else. We can read this result as evidence
of the integration of mid- and low/middle-level
features in early visual cortex, because in the decoder
layers there is an integration of two different streams
of processing: bottleneck and skip connections
information.

Discussion

We investigated the similarity in representations
between an artificial neural network trained to fill
occlusions and early visual cortical fMRI activity
acquired from humans viewing occluded images.
Specifically, we wanted to investigate whether an
artificial neural network with encoder/decoder
architecture would better approximate brain data
acquired during a task involving cortical feedback
signals, than a purely feedforward network. We have
shown two main findings. First, forcing an artificial
neural network to learn representations of natural
image structure via self-supervised learning revealed
increased similarity to brain data compared to a generic
supervised network for classification. Furthermore,
the CNN decoder pathway was more similar to brain
processing than the encoder pathway. In fact, there
was an increase in similarity going further along the
network, in line with the integration of multiple feature
levels in early visual cortex.

Comparison between VGG16 and
encoder/decoder network

As already speculated (Hassabis et al., 2017), a
possible common ground for the AI and neuroscience
communities is to challenge AI to replicate brain
processing while performing common tasks. Having
an AI solution could thus lead to better models of the
brain for those tasks. With this idea in mind, we trained
a network to solve inpainting and compared it with
human brain activity while watching the same occluded
images. We first compared a supervised network for
image classification (VGG16) and a self-supervised
network trained on the same task (our model) in terms

of brain similarity. In both occluded and nonoccluded
image locations, we obtained a higher similarity
between our model activations and fMRI data; an
expected result, considering the features learned by the
CNN. We show in Figure 7 how our model outperforms
VGG16, meaning that our model represents images
more similarly to the brain in both nonoccluded and
occluded quadrants. One of the possible reasons
why our model has better similarities with the brain
representations with respect to VGG16 could be linked
to the type of task; speculatively, the brain performs the
same task of the model, trying to reconstruct the image
behind the occlusion.

Encoder/decoder layers detail

What can our model tell us about brain processing?
Our model attempted to reconstruct the occluded
image section (lower right quadrant) using contextual
information from the image surround (i.e., the
remaining three quadrants) through several layers of
processing. The model is composed of two branches,
encoder and decoder, which analyzes images and
reconstructs the missing part in the decoder. The
network mainly learns low-level features, including edge
detection and texture pattern recognition, at different
resolutions (RFs), because these are the features
considered useful to solve the task (i.e., reconstructing
the image).

Going further with the analysis of our network,
we tested whether the encoder (i.e., the contraction
path) or the decoder (i.e., the expansion path) was
more similar to the brain’s representations. We found
that the branch of the network more similar to the
early visual cortex was not the portion compressing
retinotopic features into higher level representations
(i.e., the forward encoder pathway); but instead the
portion reconstructing retinotopic features from higher
level representations (i.e., the decoder pathway; see
Supplementary material for statistical test). Predictive
coding theories (Friston, 2008) suggest that the brain is
trying to reconstruct the image under occlusion, using
information in cortical feedback to probabilistically
infer the content of missing image sections. Partial
or complete occlusion, of objects for example, is
commonplace in our visual environments. Predictive
coding offers a neuronal mechanism by which the brain
can minimize surprise by facilitating the negotiation
between top-down predictions and feedforward input
once the occlusion is removed. A small warning signal
in a cluttered environment can become better detected
if predicted information is filtered out. Consistent with
such a neuronal framework, our data confirms some
level of filling-in with information related to inpainting
in computer vision.
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Eye movements and attention

In addition to the provided interpretation, there
may be two external hypotheses for finding contextual
information in nonstimulated regions of V1: eye
movements and attention. Although we have confirmed
over many studies that neither can account for our data
(including Smith & Muckli, 2010; Muckli et al., 2015;
Revina et al., 2018; Morgan et al., 2019), we provide
possible disproofs of these hypotheses. In this line of
research, it is essential that subjects do not make eye
movements, and they categorically do not explore the
entire image. To ensure that subjects fixate throughout
the duration of the stimulation runs we used a central
fixation point task while recording eye movements
so that trials with saccades can be excluded from the
analysis (see fMRI experiment). Aside from this fact, for
eye movements to account for our data would require
specific eye movements to each image exemplar and
that these specific patterns were consistent across trials
of those images (16 repetitions of 24 images shown
to 18 subjects in the current case). Such a systematic
pattern would be necessary to obtain consistency
in brain-DNN similarities to still work. We have
previously shown no significant differences in mean eye
position across our occluded scenes (Smith & Muckli,
2010). In previous occlusion studies conducted in our
laboratory (Smith & Muckli, 2010; Muckli et al., 2015;
Revina et al., 2018; Morgan et al., 2019), the subjects
overt attention is always on the central fixation point.
Here, as in Morgan et al. (2019), subjects had to pay
attention to a temporally random fixation color change,
and to report the category of the scene being presented
during the fixation color change using randomised
response buttons. We assume a top-down attentional
process monitoring the color of the fixation. There may
also be (covert) attentional shifts toward the occluded
region of the image, perhaps localized to regions of
expected features behind the occluder. However, gain
models of attention (that predict electrophysiologic
data well) might result in increased signal magnitude or
increased performance, neither of which we observe,
or which accounts well for classification data. Further,
we have shown in other studies, that when subjects
direct attention away from a nonstimulated region of
V1, there is still a filling in of expected information,
likely owing to contextual feedback in Muckli et al.
(2005) the case of apparent motion), demonstrating
that contextual feedback processing is independent of
attention, as expected.

Future directions

In the future, it will be important to continue
to improve network descriptions of the human
visual system by employing more descriptive and
specialized networks. Relatedly, we recently showed

how line drawings provide a good description of
internal model structure representing scene-specific
features in human early visual cortex (Morgan et al.,
2019). Being able to build a network able to predict
sketches from an image would therefore provide
additional value when comparing CNNs with brain
data. In computer vision, hand sketches have been
extensively studied, for example in sketch recognition,
generation, and sketch-based image retrieval (Riaz
Muhammad et al., 2018), and reveal that computers
can classify line drawings in addition to digital
images.

In terms of improving the biological plausibility
of neural networks, recent work has also shown
that CNNs with recurrent connections exhibit
superior performance when recognizing occluded and
nonoccluded objects (Spoerer et al., 2017) and that
recurrent connections can help to describe cortical
dynamics in early visual cortex (Kietzmann et al.,
2019). Our plan for the future is to advance upon these
important findings by training recurrent connections
to predict occluded portions of images as well as
behavioural sketches.

Along the same lines, a recently developed network
has accurately predicted visual saliency using a similar
encoder-decoder network (Kroner et al., 2020). Because
we know the human visual system’s coding of saliency
must be robust to occlusion and clutter, it would be
interesting to compare network objectives of predicting
occluded visual features and predicting saliency. Such
comparisons would allow us to understand whether
aspects of these tasks could be shared by the same
neuronal pathways.

Conclusions

We investigated the representational similarity
between a specialised artificial network built to
reconstruct occluded images and fMRI data obtained
while human subjects viewed the same stimuli. Results
suggest that low- and mid-level features are present in
early visual cortex (V1 and V2). Optimizing models
to characterise feedback signals in human cortex will
improve our understanding about the computations
in early visual cortex where we know there is rich
top-down information predicting feedforward input,
that is currently not captured in feedforward networks.
This work points to new experiments in which we
challenge AI to replicate as closely as possible brain
processing while performing cognitive tasks, testing
models explaining memory, visual imagery, and
auditory responses in early visual cortex.

Keywords: self-supervised deep neural networks,
encoder/decoder architecture, 3T fMRI, early visual
cortex, representational similarity analysis (RSA)
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Footnotes
1Data available under EBRAINS knowledge graph at https://search.kg.
ebrains.eu/instances/Dataset/c2df7995-f156-4953-bed1-fb4a003b364e.
2Leaky Relu: y = f (x) = 0.6 ∗ x + 0.4 ∗ |x| (see figure in the
Supplementary materials).
3The trained model and the code are available at https://github.com/
rockNroll87q/self-supervised_inpainting.
4In this context, a channel – or feature map – is the resulting operation
of a single convolution (input image with a single kernel). The number of
channels of a layer activation is usually the third dimension after height
and width (with two-dimensional input).
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