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Inference via sparse coding in a hierarchical vision model
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Sparse coding has been incorporated in models of the
visual cortex for its computational advantages and
connection to biology. But how the level of sparsity
contributes to performance on visual tasks is not well
understood. In this work, sparse coding has been
integrated into an existing hierarchical V2 model
(Hosoya & Hyvärinen, 2015), but replacing its
independent component analysis (ICA) with an explicit
sparse coding in which the degree of sparsity can be
controlled. After training, the sparse coding basis
functions with a higher degree of sparsity resembled
qualitatively different structures, such as curves and
corners. The contributions of the models were assessed
with image classification tasks, specifically tasks
associated with mid-level vision including figure–ground
classification, texture classification, and angle prediction
between two line stimuli. In addition, the models were
assessed in comparison with a texture sensitivity
measure that has been reported in V2 (Freeman et al.,
2013) and a deleted-region inference task. The results
from the experiments show that although sparse coding
performed worse than ICA at classifying images, only
sparse coding was able to better match the texture
sensitivity level of V2 and infer deleted image regions,
both by increasing the degree of sparsity in sparse
coding. Greater degrees of sparsity allowed for inference
over larger deleted image regions. The mechanism that
allows for this inference capability in sparse coding is
described in this article.

Introduction

Computational models of the visual cortex have
progressed significantly over the past few decades.
One approach to modeling cortical neurons, denoted
as goal-oriented (or supervised) learning, is based on
optimizing model goals such as image classification (see
e.g., review papers, Geisler, 2008; Yamins & DiCarlo,

2016; Turner et al., 2019). In recent years, deep neural
network models optimized for image classification
(e.g., Krizhevsky et al., 2012; Dapello et al., 2020)
have captured neural processing in cortical visual
areas (Kriegeskorte, 2015; Yamins & DiCarlo, 2016),
including low and mid-level visual cortex (e.g., Pospisil
et al., 2018; Cadena et al., 2019; Kindel et al., 2019;
Laskar et al., 2020).

Another approach for modeling cortical visual
neurons which is the focus here is denoted as
stimulus-oriented (or unsupervised) learning. In
particular, it has been hypothesized that neurons are
matched to the statistical properties of images in the
environment (Attneave, 1954; Barlow, 1961; Simoncelli
& Olshausen, 2001) by optimizing statistical constraints
such as sparsity or coding efficiency. For instance, the
sparse coding model of Olshausen and Field (1996),
and models of independent component analysis (ICA;
Bell & Sejnowski, 1995; Hyvärinen & Oja, 1997),
offered a principled mechanism for the derivation of
oriented filters qualitatively similar to simple cells in
the primary visual cortex (area V1). Other investigators
have proposed methods of deriving models of V1
complex cell responses (Hyvärinen & Hoyer, 2001;
Berkes & Wiskott, 2005; Karklin & Lewicki, 2009),
deriving V2 model responses from V1 responses (Lee
et al., 2007; Coen-Cagli & Schwartz, 2013; Shan &
Cottrell, 2013; Hosoya & Hyvärinen, 2015), and
hierarchical nonlinear models that learn patterns of
statistical dependencies (Karklin & Lewicki, 2005).
Stimulus-oriented approaches have also been adapted to
deep neural networks with success in capturing aspects
of the ventral visual cortex (Zhuang et al., 2021).

In addition to bottom-up approaches for optimizing
statistical constraints, stimulus-oriented approaches
can be closely tied to top-down generative approaches
describing the process by which the signals are generated
(Rao et al., 2002). For instance, sparse coding can be
seen both from the perspective of optimizing sparseness
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and as a generative model of images (Olshausen &
Field, 2006). Generating and inferring image structure
is also an important aspect of vision (Yuille & Kersten,
2006) in addition to classifying images. Although a
major emphasis in computer vision has been on image
classification, other ideas exist for how inference and
other capabilities may be achieved in image models (Pei
& Zeng, 2006; Zhaoping & Jingling, 2008; Goodfellow
et al., 2014; Luo et al., 2015; Radford et al., 2015;
Svanera et al., 2021).

The aim of this work is to investigate how sparse
coding can be explicitly integrated into a V2 model
(Hosoya & Hyvärinen, 2015) to introduce an inference
mechanism (discussed elsewhere in this article);
test its performance on an inference task; test its
performance on image classification tasks spanning
line combinations, figure–ground classification, and
texture classification; and compare the model’s texture
sensitivity with the texture sensitivity of V2 as reported
in the (fMRI) results of Freeman et al. (2013). This
approach was taken, as opposed to a complete vision
model capable of inference like a generative adversarial
network, because it allowed for the principle of a sparse
prior to be studied in a model V2 stage when holding
lower-level stages (V1 and V1 complex) constant with
respect to the effect of the sparse prior.

The work in Hosoya and Hyvärinen (2015)
includes a model of V1 complex cell responses and a
dimensionality reduction stage, followed by a version
of independent component analysis for overcomplete
codes and rectification to form V2-like model neurons.
Although ICA results in filter responses with high
kurtosis, it does not explicitly optimize for sparsity. In
addition, studies comparing ICA and sparse coding
in the overcomplete case in a single-layer model have
found differences (Livezey et al., 2019). Therefore,
the purpose of this work was to understand the
implications of incorporating an explicit sparse coding
at the last stage of the model, for which the sparsity
level could also be controlled.

The current understanding of V2 characterizes its
receptive fields in terms of its response properties,
some of which include cross-orientation suppression
(Rowekamp & Sharpee, 2017), selectivity for angles
(e.g., Ito & Komatsu, 2004), selectivity for figure and
ground (von der Heydt & Peterhans, 1989; Peterhans &
von der Heydt, 1989; Zhaoping, 2005), and selectivity
for texture (Freeman et al., 2013; Ziemba et al., 2016;
Kohler et al., 2016). However, the receptive fields of
V2 neurons are not fully understood, and there is
no consensus that any one model best explains V2
units. The model of Hosoya and Hyvärinen (2015)
can capture some properties of V2 neurons, but in this
article, our primary goal was to highlight practical
vision capabilities rather than to compare with neural
data. The sparse coding model works by finding a
dictionary of basis functions such that only a few are

needed to reconstruct any given image. Sparse coding
was successful for modeling V1, so some investigators
continued to perform sparse coding twice to model
V2 (e.g., Lee et al., 2007). Others have looked at
hierarchical nonlinear generative sparse coding models
(Karklin & Lewicki, 2005). Here, traditional sparse
coding (Olshausen & Field, 1996) was performed in the
V2-stage of a V2-like model.

The focus of this work was on a hierarchical visual
cortical model with sparse coding because sparse coding
has various computational advantages (Willshaw et al.,
1969; Kanerva, 1992), is biologically plausible (Field,
1994; Olshausen et al., 2003; Olshausen & Field, 2004;
Rozell et al., 2008), and sparse firing has been observed
in visual cortical neurons in response to images (e.g., see
Willmore et al., 2011; Yoshida & Ohki, 2020), although
see also the discussion in the work by Berkes et al.
(2009). Although the sparse coding model of Olshausen
and Field (1996) is not the only method of achieving a
sparse neural representation, its underlying generative
model provides a coding strategy that models neuron
responses as contributions of basis functions that
sum to reconstruct the input image rather than linear
filter responses to that image. This process allows for
inference via the mechanism discussed next.

The original approach by Hosoya and Hyvärinen
(2015) performed a variation of ICA for overcomplete
codes (here referred to as overcomplete ICA) as its
final V2-stage computation to derive an overcomplete
sparse representation, but sparse coding provides
several appealing computational differences. First,
although the generative model of sparse coding is
linear, its forward transformation is nonlinear (the
solution to an optimization problem). By comparison,
the forward transform of ICA is linear (multiplication
by a filter matrix). Second, unlike ICA, the sparse
coding algorithm allows for explicit control of the
degree of sparsity. Third, sparse coding explicitly learns
a dictionary of basis functions for which each of the
model’s responses is interpreted as the contribution of
a single basis function to the image.

The degree of sparsity enforced by the L1
regularization coefficient of sparse coding allows the
model to focus more on either a faithful reconstruction
with low values or structure inference with high values.
With low values (low sparsity), many basis functions
are available and the image is reconstructed almost
exactly. With high values (high sparsity), only a few
basis functions constitute the image reconstruction,
and each individual basis function must do more to
explain the image (minimize reconstruction error).
In practice, reconstruction error increases with
fewer basis functions, but more latent information
is introduced into the reconstruction. The idea,
although counterintuitive, is that higher error may
be advantageous. The error allows for missing image
information owing to events such as occlusion to be
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discarded in the model’s representation of the image,
and the model instead explains the image from an
incomplete set of input responses. For this reason, this
mechanism is referred to here as the model’s inductive
inference mechanism.

Both the overcomplete ICA and non-negative sparse
coding based models were tested on three classification
tasks: a figure–ground detection task, a texture
classification task, and an angle discrimination task (see
the Methods for details). Classification was performed
by training a linear support vector machine (SVM) on
the V2-stage responses generated by both models to give
a sense of how linearly separable the image classes were
in the V2-stage representation space. Although a good
performance on these tasks is probably characteristic
of a good initial (low-level) vision model, vision
models should be expected to perform a large range
of functions necessary for understanding the world.
One might expect tasks like noise removal, image
completion, and content generation to be necessary
to compete with the wide range of tasks the human
visual system can perform. One such task was explored
here: the ability of both models to fill in missing image
information when deleted midway through the visual
processing pipeline. Good performance on this task
would suggest an image understanding beyond an
association with labels and provide evidence that the
inductive inference mechanism postulated here might
benefit other vision models.

The novel contribution of this work is an
understanding of the importance of vision tasks
such as image classification, image inference, and
texture sensitivity, and their implications for model
performance. Non-negative sparse coding was found to
perform worse on the popular computer vision metric
of image classification, but was more closely matched
with V2 in terms of texture sensitivity. Non-negative
sparse coding also better inferred deleted image regions
in the image inference experiment with the proper
value of the regularization coefficient. These results
highlight some of the tradeoffs of sparse coding with
different sparsity levels for the range of tasks. Also,
sparse coding with a larger regularization coefficient
(i.e., a larger sparsity level) is viewed here as providing
an enhancement rather than only a degradation of the
model. Although reconstruction error becomes higher
with a larger regularization coefficient and may seem
undesirable, it is proposed here that such a strategy may
be useful for vision.

Methods

This work builds on the hierarchical unsupervised
learning V2 model of Hosoya and Hyvärinen (2015).
Non-negative sparse coding similar to that of Hoyer

(2002) was incorporated in place of overcomplete
ICA in order to maintain the non-negative response
property of the original model. Also, the results were
compared with the original overcomplete ICA based
model. Hosoya and Hyvärinen (2015) made ICA
overcomplete by increasing the number of independent
components in the loss function beyond the number
of inputs, then estimating the components with score
matching according to Hyvärinen (2005). The same loss
function in Hyvärinen (2005) was minimized here for
the original model.

The generative model of sparse coding models
images as sparse linear combinations of a set of basis
functions given by the matrix � called a dictionary:

x = �a (1)

where the vector x is the image and the vector a
combines columns of � and contains mostly zeros
(sparse). Because there are a few variations of
sparse coding, we define our precise method here.
Non-negative sparse coding was performed with
scikit-learn (Pedregosa et al., 2011, version 0.20.3) by
inferring the basis function matrix � such that

� = argmin
�

‖X − �A‖2F | ‖�i‖2 = 1, ∀i (2)

where X is a matrix with column input image vectors xi,
A is a matrix of sparse coefficient column vectors ai,
which are functions of � and xi, and the operation ‖ ‖F
is the Forbenius norm. During each training step, first
the sparse coefficient vector ai for each input vector xi
is inferred via LASSO by choosing ai such that

ai = argmin
ai

‖xi − �ai‖22 + λ‖ai‖1 | ai, j > 0, ∀i, j, (3)

where the hyperparameter λ determines the level
of sparsity in the non-negative sparse coding
representation. The objective in Equation 3 is
minimized via coordinate descent with the current
value of the basis function matrix �. After inferring
all ai, the basis function matrix is updated with one
step of coordinate descent according to its objective in
Equation 2. This process was repeated until there was
little change in the appearance of the basis function
visualizations (discussed elsewhere in this article). This
was similar to the method of Olshausen and Field
(1996), but with a non-negativity constraint.

In the original model, overcomplete ICA was
followed by rectification to constrain the model V2
responses to be non-negative. The same could be done
for sparse coding, but a more natural approach was
available via non-negative sparse coding, a method
that constrains the responses of sparse coding to be
either zero or positive. Non-negative sparse coding
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Figure 1. Hierarchical V2 model with sparse coding. (a) The model begins by computing the responses of the Gabor filters (3
frequencies, 12 orientations, and 2 phases) over the 6×6 central spatial locations. (b) Next, the V1 responses are pooled by taking the
square root of the energy of each pair of filters that are 90◦ out of phase. (c) The pooling is followed by PCA whitening and reduction
down to 100 components. (d) Finally, the representation is expanded by a factor of eight times with non-negative sparse coding.

is not equivalent to sparse coding with rectification,
but constrains the model to find basis functions that
combine without inverting contrast (with negative
coefficients). The introduction of sparse coding into
the overall V2 model also introduces an additional
hyperparameter: the L1 regularization coefficient.
The L1 regularization coefficient controls the degree
of sparsity in the sparse coding responses. Larger
values result in fewer active (non-zero) units for
reconstructions. Several values for the L1 regularization
coefficient in the range of [0.1, 4.0] were explored,
including values common for discovering basis
functions that are similar to Gabor wavelets in
traditional sparse coding as well as much larger values.
Values of 0.5 and 4.0 were of particular interest
because they maximized the performance on the later
classification tasks and forced the model to usually
recruit only a few basis functions, respectively. The
latter approximately maximizes prior information
in each individual basis function. This approach is
compared with the original ICA model qualitatively
with V2 unit visualizations and quantitatively with their
performances on several vision tasks. The overcomplete
ICA model was less sparse than non-negative sparse
coding with a regularization coefficient of 0.5, but we
noticed that an approximate ceiling was reached. As the
regularization coefficient decreased, the classification
accuracy increased until a value of about 0.5.

The models (see Figure 1 for an illustration with
sparse coding) were trained on 400,000 32×32 image
patches from ImageNet ILSVRC12 (Russakovsky
et al., 2015). The patches were randomly sampled from
images after subtracting the mean and normalizing
the variance of the images. Low-contrast patches
were not included (variance of less than 0.32), as was
done in Hosoya and Hyvärinen (2015). The mean
of each patch was also subtracted and its variance
normalized. The overcomplete ICA and non-negative
sparse coding models were trained for 16 epochs
(presentations of the whole training set). The model
hyperparameters were matched to that of Hosoya and
Hyvärinen (2015). The log of the probability density
function (the function “G”) of the input under the
overcomplete ICA model was the negative log of the

hyperbolic cosine function. The model V1 simple cell
responses were computed with Gabor filters along
the 6×6 center locations of each 32×32 image patch.
This is equivalent to the two-dimensional convolution
of the Gabor filters with the image with a stride of 4
and no padding around the edges of the image. There
were 3 frequencies (1.25 cycles, 1.5 cycles, 1.75 cycles),
12 orientations (increments of 15◦ from 0◦ to 165◦),
and 2 phases (0◦ and 90◦). The filters had a receptive
field size of approximately 12×12 pixels. The resulting
set of model V1 simple cell responses for the location
and parameter choices had a dimension of (6, 6, 3,
12, 2) responses. The model V1 complex cell responses
were computed by taking the square root of the sum
of the squares of each quadrature (90° out of phase)
pair of Gabor functions to model phase invariance.
The resulting model V1 complex cell responses had a
dimension of (6, 6, 3, 12) because the last dimension
of the model V1 simple cell responses corresponded to
the quadrature pair. Before computing the model V2
responses, the model V1 complex cell responses were
pooled with principal component analysis (PCA) by
maintaining only the 100 components with the largest
eigenvalues. Finally, the V2 responses were computed
with overcomplete ICA or non-negative sparse coding
with 800 filters or basis functions. The source code
for the complete V2 model has been made available at
https://notabug.org/jbowren/hv2model.

The model is illustrated in Figure 1. The number of
components and V2 units matches that of Hosoya and
Hyvärinen (2015). A second configuration with 11×11
spatial locations and 350 principal components (for the
increase in Gabors) was also explored for the inference
experiment in order to reconstruct entire patches. The
number of V2 units chosen was 2,800 to keep the
representation 8 times overcomplete.

The V2 model neurons were visualized in a similar
fashion to that of Hosoya and Hyvärinen (2015). First,
a 1-of-K representation was inserted into the model as
the V2-stage responses where the unit to be visualized
is set to 1 and every other unit is set to 0. Next, the
model proceeded backward until the corresponding V1
complex responses were obtained. This representation
was then plotted in the input 32×32 image space
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Figure 2. V2 model unit visualization. There are 6×6 spatial
locations, 3 frequencies, and 12 orientations. Opacity reflects
the strength of the response and color the sign with red being
excitatory and blue inhibitory. Location represents the location
of where the Gabor was applied in the image. Orientation
represents the orientation of the Gabor. Size represents the
frequency of the Gabor (larger size smaller frequency).

with ovals drawn over the 6×6 center locations in the
32×32 image space. The opacity of the ovals represents
the strength of the responses, the color indicates
the sign of the response (red for excitatory and blue
inhibitory), the size of the ovals reflect the frequency of
the Gabors, and the orientation of the ovals represents
the orientation of the Gabors. Excitatory (red) Gabors
signify the presence of stimuli with the same orientation
and frequency (size). Inhibitory (blue) Gabors signify
that stimuli with the same orientation and frequency
should be absent to help excite the unit. An example
of a V2 model unit is shown in Figure 2. In addition
to this visualization, the six 32×32 image patches that
maximally activate each unit are shown in the Results
to provide insight into the representation of the units.

The resulting V2 models with non-negative sparse
coding and overcomplete ICA were run on three
different image datasets. The datasets were selected
because they are considered to capture mid-level
visual tasks that could be appropriate at the V2 level,
namely to perform figure–ground classification, texture
classification, and to predict the angle between two
lines connected at one end–point. Classification was
performed by training a linear SVM (with the SVC
classifier of Scikit-Learn; Pedregosa et al., 2011) on
the model responses of each model configuration. The
choice of the regularization coefficient could influence
the results, so a few values of the regularization
coefficient for the linear SVM were tested as well as
logistic regression model with the same values of the
regularization coefficient (and without a regularization
coefficient), but ICA consistently performed the
best outside of the error standard deviation bars
across all configurations and datasets. We include
the classification results for these models and all the
values of the regularization coefficient we tested in
Appendix A. Because the regularization coefficient
did not change the model that performed best, we
simply report the result of the SVM classification with

Figure 3. The 32×32 figure–ground image patches. Example
32×32 image patches sampled from the Berkeley
Segmentation Database (BSDS300; Fowlkes et al., 2007). The
label for each image patch indicates whether the figure of the
image falls primarily on the right side or left side of the image.
The labels were determined from the corresponding 32×32
region of the human-drawn contour line map for each image.

a regularization coefficient of 1. For each dataset,
five-fold cross-validation was performed and the average
accuracy and standard deviation were recorded.

For the figure–ground experiment, the images
and figure–ground labelings were obtained from the
Berkeley Segmentation DataSet (BSDS300; Fowlkes
et al., 2007). Figure and ground refer to regions of
images separated by some contour in the image that
determines the main region of focus for an observer.
The region denoted as the figure is the main region
of focus that might grab the foveal attention of an
observer, whereas the ground is considered to provide
context to the figure. Neural processing is thought to
have a mechanism of distinguishing between figure
and ground regions (see Coen-Cagli & Schwartz, 2013,
for a more in-depth description). Fowlkes et al. (2007)
showed that the regions of images with figure rather
than ground were usually smaller and more convex, so
these convex regions probably require more advanced
features for image classification. A total of 20,000
32×32 image patches (see Figure 3) were randomly
sampled from the dataset with labels (figure or ground)
assigned based on which side of the image (left or
right) the human-labeled contour primarily fell. The
second experiment included synthetically generated
images according to Portilla and Simoncelli (2000).
The images were generated to match the low order
statistics of different classes of real texture images
from the Brodatz dataset (Brodatz, 1966). The models
were tested on 30,000 32×32 patches sampled from 15
texture categories; an example of a few texture patch
families are shown in the left column of Figure 4. The
last classification experiment tested the models on line
segments joined at one endpoint with varying lengths,
locations, rotations, and angles between the two lines.
There are a total of 3 lengths (10, 15, and 20 pixels), 9
locations (the 3×3 center locations in the image), 12
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Figure 4. The 32×32 texture and noise patches extracted from
256×256 generated texture and noise images. These 32×32
patches were extracted from 256×256 Brodatz texture images
generated with the code made available by Portilla and
Simoncelli (2000). The column on the left shows 4×4 grids of
32×32 patches where each grid corresponds with a different
texture. The column on the right shows the corresponding
spectrally matched noise versions of the texture patches
extracted at the same locations within the spectrally matched
noise versions of the texture images. A complete set of the full
size 256×256 texture and noise images are shown in
Appendix B.

rotations (0◦ to 330◦ with an interval of 30◦), and 6
angles (30◦ to 180◦ with an interval of 30◦). Examples
of the line stimuli are shown in Figure 5.

Next, the texture sensitivity of the models was
measured via the texture modulation index (Freeman
et al., 2013) computed with 30,000 32×32 texture
patches and 30,000 32×32 spectrally matched noise

Figure 5. The 32×32 line stimuli. Two lines connected at one
endpoint with 3×3 center locations, 6 angles, 12 rotations, and
3 lengths. Each line image is a 32×32 image.

versions (see end of paragraph) of the same patches.
The texture modulation index is a measure of texture
sensitivity in the range of [−1, 1] where 1 indicates the
maximal sensitivity for texture and −1 the opposite.
The texture modulation index is calculated by taking the
difference of the responses of a model (or brain region)
to texture stimuli and noise stimuli, then normalizing by
the sum of the two. Here, the index was averaged over
all of the model neurons. The equation for calculating
the modulation index M is given by

M = rtex − rnoise
rtex + rnoise

, (4)

where rtex is the response to a texture stimuli and rnoise
is the response to a spectrally matched noise version of
the texture patch. The 30,000 texture patches were taken
from the same textures in the classification experiment.
The corresponding 30,000 spectrally matched noise
patches were obtained by taking 32×32 patches at the
same locations of the texture patches from spectrally
matched noise versions of the original 256×256 texture
stimuli. The spectrally matched noise versions of
the original texture stimuli were generated by first
computing the magnitude and phase of a fast-Fourier
transform (FFT) of each texture and a corresponding
randomly generated Gaussian white noise image. Next,
the phase component of the original texture image was
replaced with the phase component of the Gaussian
white noise image. Finally, the spectrally matched noise
images were obtained by performing the inverse FFT
on the new magnitude and phase representation. This
ensures that the magnitude of the FFT of the spectrally
matched noise image is the same as the magnitude of
the FFT of the synthesized texture image with uniform
random phase (see Galerne et al., 2010).

Next, the ability of the models to fill in missing
information was tested by deleting part of the image
representation within the model before non-negative
sparse coding or overcomplete ICA, then going
backward to reconstruct the image from the models’
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responses. The backward computation proceeded by
multiplying the V2 responses by the sparse coding
dictionary (or ICA mixing matrix for overcomplete
ICA) and the inverse PCA whitening matrix to
recover the V1 complex responses. Next, the V1
simple responses were calculated from the V1 complex
responses and the angles between each pair of responses
(in polar coordinates) that were saved in the forward
computation; this practice does not affect the relative
reconstruction accuracy of the two models. Finally, the
image was reconstructed by convolving the V1 simple
responses with the transpose of the original Gabor
filters. This is an approximation, but computationally
practical to undo the forward Gabor filter transform.
A total of 1,000 image patches were sampled from
ImageNet and fed forward through the model until
model V1 complex responses were obtained. Deletion
was then performed by setting either a 1×1 or 2×2
region of the V1 complex responses to the minimum
value of the responses minus 1. This corresponded with
approximately a 2×2 or 6×6 region, respectively, in the
original image space. Next the responses were filtered
with the PCA whitening matrix, then fed through
either non-negative sparse coding (with a regularization
coefficient of 2.0 or 4.0) or overcomplete independent
component analysis. A variety of values of the sparse
coding regularization coefficient in the range [0.1, 4.0]
were tested, and the pair 2.0 and 4.0 was shown instead
of 0.5 and 4.0, because a regularization coefficient
of 0.5 was not large enough to significantly change
the input representation. Finally, the transformations
were undone as detailed above to get the models’
representation in the original image space. The
reconstructions were visually inspected side-by-side
to the original image patches, and the average
mean-squared error (MSE) of the representations and
the original image patches was computed for both
models and compared.

Results

Unit properties

The visualizations for non-negative sparse coding
with regularization coefficients of 0.5 and 4.0 and
overcomplete ICA when run with 6×6 spatial locations
are shown in Figures 6a, 6b, and 6c respectively. The
two models discovered qualitatively different units.
The non-negative sparse coding units contain corners,
curves, circles, lines, parallel lines, and other structures.
The overcomplete ICA units contain iso-oriented
excitation with broad, side, cross, and end inhibition
units and orientation-convergent excitation with end
inhibition units as defined by Hosoya and Hyvärinen
(2015). Each non-negative sparse coding unit also

Figure 6. Visualization of V2 model units with 6×6 spatial
locations and 100 principal components. (a) Sparse coding with
a regularization coefficient of 0.5. (b) Sparse coding with a
regularization coefficient of 4.0. (c) ICA. Values outside the
central 6×6 region do not have a response. Opacity reflects the
response intensity, color reflects the sign of the response (red
for positive and blue for negative), and size reflects frequency.

recruited more excitatory values than inhibitory values
while overcomplete ICA had more balance between
excitation and inhibition. However, it is important to
remind the reader that, unlike overcomplete ICA, in
non-negative sparse coding there is no explicit form of
forward computation, so positive and negative values
do not bear the same meaning. An excitatory value in

Downloaded from abstracts.iovs.org on 04/24/2024



Journal of Vision (2022) 22(2):19, 1–19 Bowren, Sanchez-Giraldo, & Schwartz 8

Figure 7. Visualization of sparse coding model V2 units with
11×11 spatial locations and 350 principal components. (a)
Sparse coding with a regularization coefficient of 2.0. (b) Sparse
coding with a regularization coefficient of 4.0. (c) ICA. Opacity
reflects the response intensity, color reflects the sign of the
response (red for positive and blue for negative), and size
reflects frequency.

an overcomplete ICA unit simply means that stimulus
was present with the orientation and frequency depicted
by the Gabor plot and an inhibitory value the opposite,
but the same stimulus can be described by negating
the sign of the unit and unit response. By contrast,
an excitatory value in a non-negative sparse coding
unit means that a stimulus with the given orientation

Figure 8. Maximum response patches. (a) Sparse coding with a
regularization coefficient of 0.5. (b) Sparse coding with a
regularization coefficient of 4.0. (c) ICA. The patches that
maximally activated each V2 unit are shown to the right of its
visualization. The response strength decreases from left to
right.

and frequency was useful for reconstructing the input,
but the sign of the unit cannot be flipped because the
model is non-negative. The results for 11×11 spatial
locations with regularization coefficients of 2.0 and 4.0
are shown in Figures 7a and 7b. The units discovered
by non-negative sparse coding and overcomplete ICA
(Figure 7c) with 11×11 spatial locations were similar to
that for 6×6 spatial locations.

The patches that maximally excited selected units
for non-negative sparse coding and overcomplete ICA
with 6×6 spatial locations are shown in Figure 8. The
patches for non-negative sparse coding (for both values
of the regularization coefficient) reveal texture-like
selectively in certain units (the second and third in
Figure 8a and the third in Figure 8b) that are not easily
described by common geometric primitives. The second
unit in Figure 8a could be described as horizontal lines
with gaps in between, although it was also activated by
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Figure 9. Box and whisker plot of kurtosis for all models. Plots
are generated from the kurtosis over all 400,000 ImageNet
patches for each unit. Circles represent outliers. Non-negative
sparse coding with a regularization coefficient of 4.0 (SC 4.0)
had the highest overall kurtosis, then non-negative sparse
coding with a regularization coefficient of 0.5 (SC 0.5), then ICA.
Each model finds a different sparse representation.

images of text. The third unit in Figure 8a appears as
repeating small circles, and the third unit in Figure 8b
appears as repeating curved lines. Corners appeared
as lines connected at 90° angles, sometimes with other
geometries nearby. One corner unit continued in
both directions and was activated by crosses. Curves
appeared mostly in circles. For the overcomplete ICA
units, iso-oriented excitation units with side- and cross-
inhibition appeared as lines, and iso-oriented excitation
units with end inhibition appeared as lines stopping at a
point. Orientation-convergent units with end inhibition
appeared as blobs stopping at a point. Iso-oriented
excitation with broad inhibition units varied, but often
appeared as lines.

The kurtosis values were much larger for non-
negative sparse coding with a regularization coefficient
of 4.0 than for a coefficient of 0.5 or overcomplete ICA
(see Figure 9). Exemplary units for each model are
shown in Figures 10a, 10b, and 10c. Compared with
other units, texture units had a large contribution to
individual images (high kurtosis) in non-negative sparse
coding, whereas overcomplete ICA relied often on
iso-oriented excitation with broad inhibition units when
assigning the largest coefficients. The distributions of
the responses for each model (see Figure 10d) were
similar to a mixture between an exponential distribution
and a delta at zero, reflecting the rectification operation.
The mixing proportion for the delta component is
higher for the models with larger average kurtosis.
Non-negative sparse coding distributions were more
sparse and had higher kurtosis, with a regularization
coefficient of 4.0 being the most sparse.

Figure 10. Model response properties. (a–c) Kurtosis of
exemplary units of (a) sparse coding with a regularization
coefficient of 0.5, (b) sparse coding with a regularization
coefficient of 4.0, and (c) ICA. High kurtosis indicates more
involvement of a unit in reconstructing particular images. (d)
Histogram in the log domain of the responses to all 400,000
image patches for each of the three models.

Image classification

A common metric of vision models is performance
on image classification tasks. A few classification tasks
were explored here which test the ability to distinguish
between figure and ground, multiple texture classes,
and the angles between line segments connected at
one point. The results for these experiments are shown
in Figure 11. Overcomplete ICA performed the best.
Non-negative sparse coding with a regularization
coefficient of 0.5 was competitive with overcomplete
ICA on the figure–ground and texture classification
tasks, but non-negative sparse coding with a
regularization coefficient of 4.0 was only competitive
on the figure–ground task. Non-negative sparse coding
with a regularization coefficient of 4.0 performed the
worst on all tasks. For the figure–ground, texture, and
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Figure 11. Classification accuracies. Average accuracy over
5-fold cross-validation for non-negative sparse coding with
regularization coefficients of 0.1, 0.25, 0.5 and 4.0 (listed as SC
followed by the regularization coefficient) and overcomplete
ICA (listed as ICA). Error bars reflect standard deviation over the
5 folds. Random denotes the result of guessing (expectation
computed for the number of labels).

Figure 12. Average number of support vectors. Average number
of support vectors for each experiment over all classes (2 for
figure–ground, 15 for texture, and 6 for line stimuli).

line stimuli tasks, non-negative sparse coding with a
regularization coefficient of 0.5 had percent accuracies
of 62.3%, 72.3%, 81.8%, respectively; non-negative
sparse coding with a regularization coefficient of 4.0
had percent accuracies of 59.9%, 46.4%, and 47.8%,
respectively; and overcomplete ICA had percent
accuracies of 63.5%, 78.3%, and 90.8%, respectively (all
shown to one decimal place). We also report the average
number of support vectors used for each manipulation
of each experiment in Figure 12.

Texture sensitivity

A comparison with human vision can be made by
analyzing the responses of these models to textures
of varying classes, such as the textures of the second
classification experiment and their spectrally matched
noise versions that preserve the amplitude spectrums
of the original textures but have randomized phase.
Secondary visual cortex shows sensitivity to texture

Figure 13. Texture modulation indices for vision models. The
models include the initial simulated V1 stage via Gabor filters
(V1 Sim), overcomplete ICA (ICA), and non-negative sparse
coding with a regularization coefficient of 0.5 (SC 0.5), 2.0 (SC
2.0), and 4.0 (SC 4.0).

that is absent in V1 (Freeman et al., 2013; Kohler et al.,
2016; Ziemba et al., 2016; Laskar et al., 2020). For
instance, in an fMRI experiment, the modulation index
(see Methods) for textures versus noise was much larger
in V2 than in V1 with an average modulation index
of about 0.13 across subjects for V2 (Freeman et al.,
2013). We used the same texture and noise stimuli as in
the texture classification experiment. For the models
studied here, a similar difference in modulation index
(between the V1 stage and V2 stage) would suggest
that the trend of texture sensitivity in the primary and
secondary visual cortex is also present in these models.
The texture modulation indices for all models were
computed by taking the responses to the 30,000 texture
patches along with the responses to 30,000 spectrally
matched noise versions of the texture patches, taking
the difference between each, and normalizing via the
sum of each (see Methods) to yield 30,000 modulation
indices. Modulation indices for texture–noise pairs that
both yielded 0 response were discarded because they did
not provide any response information. The modulation
indices for overcomplete ICA and non-negative sparse
coding with regularization coefficients of 0.5, 2.0, and
4.0 are shown in Figure 13.

The large kurtosis of non-negative sparse coding
resulted in many more texture-noise pairs with no
response (0 response to the texture and noise image) as
the regularization coefficient increased. The percentage
of texture–noise pairs with a response for overcomplete
ICA was 73.9% and for non-negative sparse coding
with regularization coefficients of 0.1, 0.25, 0.5, 1.0,
1.5, 2.0. 2.5, 3.0, 3.5, and 4.0 were 21.7%, 18.9%,
15.2%, 9.73%, 6.16%, 3.84%, 2.38%, 1.46%, 0.925%,
and 0.594% respectively. However, overcomplete ICA
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Figure 14. Texture modulation indices for non-negative sparse
coding with various values of the regularization coefficient. As
the regularization coefficient increased, the texture modulation
increased. A regularization coefficient of 2.5 yielded a
modulation index of approximately 0.112, which roughly
approximates the texture modulation index of V2 as measured
by fMRI (Freeman et al., 2013).

does not have a sparsity control, so it could not yield
representations with higher kurtosis. Interestingly, as
the regularization coefficient of non-negative sparse
coding increased, the modulation index increased. Over
the range of values tested, a regularization coefficient of
2.5 most closely matched the modulation index of V2.
The modulation indices for a few of the values tested
are shown in Figure 14. The increase of the modulation
index with sparsity is consistent with previous findings
that considered deep neural networks (Zhuang et al.,
2017).

Patch completion

A less-studied, but important, metric for vision
models is their ability to infer missing structure in
images. In this experiment, 1×1 and 2×2 regions were
deleted at the level of the V1 complex cell responses.
Selected patch reconstructions are shown in Figures 15
and 16. The columns in Figures 15 and 16 correspond
with the different stages of visual processing in the
model starting with the original image. The next
two columns show the image reconstruction by the
model after Gabor filtering (V1) and energy pooling
along with the information removal (V1C Mod).
Because the inverse transform of the V1 complex
responses was undone exactly by saving the angles
between quadrature pair responses during the forward
transform, the V1 complex stage did not change the
appearance of the reconstruction. For this reason, the
V1 complex reconstruction without the information

Figure 15. Image reconstructions of 32×32 image patches with
a 1×1 missing V1 complex region. The first column shows the
original image, the second the V1 reconstruction of the image,
the third the V1 complex reconstruction with 1×1 missing
region, the fourth the PCA reconstruction, the fifth the
overcomplete ICA reconstruction, the sixth the non-negative
sparse coding reconstruction with a regularization coefficient of
2.0, and the last the non-negative sparse coding with a
regularization coefficient of 4.0.

removal was omitted (see the V1 representation
instead). The next column shows the reconstruction
after redundancy reduction with PCA. The final three
columns show the model’s final stage of processing
with either overcomplete ICA, non-negative sparse
coding with a regularization coefficient of 2.0 (SC 2.0),
and non-negative sparse coding with a regularization
coefficient of 4.0 (SC 4.0). The MSE for the patches
with a 1×1 V1 complex region deleted for non-negative
sparse coding with a regularization coefficient of 2.0
was 0.0129, with a regularization coefficient of 4.0
was 0.0218, and for overcomplete ICA was 0.786.
The MSE for the patches with a 2×2 V1 complex
region deleted for non-negative sparse coding with a
regularization coefficient of 2.0 was 0.0355, with a
regularization coefficient of 4.0 was 0.0304, and for
overcomplete ICA was 2.67. Both non-negative sparse
coding manipulations performed much better than
overcomplete ICA. The Student t-test for independent
samples showed that both were significant (p < 0.01).
The differences between non-negative sparse coding
with both values of the regularization coefficient
were also significant (p < 0.01; t-test for independent
samples) with non-negative sparse coding and a
regularization coefficient of 2.0 performing better
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Figure 16. Image reconstructions of 32×32 image patches with
2×2 missing V1 complex region. The first column shows the
original image, the second the V1 reconstruction of the image,
the third the V1 complex reconstruction with a 2×2 missing
region, the fourth the PCA reconstruction, the fifth the
overcomplete ICA reconstruction, the sixth the non-negative
sparse coding reconstruction with a regularization coefficient of
2.0, and the last the non-negative sparse coding with a
regularization coefficient of 4.0.

when only a 1×1 V1 complex region was deleted, and
with a regularization coefficient of 4.0 performing
better when a 2×2 V1 complex region was deleted.
Overcomplete ICA reconstructions did not seem to
attempt to complete missing information. Interestingly,
non-negative sparse coding with different regularization
coefficients inferred missing information with different
plausible image reconstructions, such as how it inferred
the car’s bumper and the arrow in the last two rows
in Figure 15. Also, higher sparsity allowed for better
inference when more information was missing in the
line structure in the second row and the low spatial
frequency region in the fifth row in Figure 16.

Discussion

This work built on the hierarchical unsupervised
learning V2 model of Hosoya and Hyvärinen (2015).
Their work investigated overcomplete independent
component analysis as a sparse coding model, but
they did not investigate the original sparse coding
model of Olshausen and Field (1996). In this article,
the different structures learned by incorporating ICA

versus sparse coding in the V2 model were shown, a
characterization of the marginal statistics of the filter
responses was performed, and the implications for
performing inference and classification tasks with these
approaches were demonstrated.

This article examined the tradeoffs of ovecomplete
ICA versus non-negative sparse coding, and non-
negative sparse coding with different sparsity levels, for
vision. Good performance on a single task like image
classification does not imply good performance on
other tasks like image inference. Furthermore, image
classification accuracy may suffer with a certain degree
of kurtosis, whereas texture sensitivity becomes more
like V2. Although seemingly worse for the model, such a
change may be tolerated in the light of V2 being an early
visual processing area. Perhaps further transformations
are needed before classification accuracy increases to
the degree observed by overcomplete ICA. However,
it is not obvious that the strategy of sparse coding by
Olshausen and Field (1996) should be ascribed to V2,
and other sparse coding algorithms may yield better
classification accuracy with a representation that is
more sparse. Although the non-negative sparse coding
model here was linked to V2 via the modulation index,
other coding strategies may also yield similar values of
the modulation index.

In terms of our choice of sparse coding
implementation, a theoretical link exists between
the sparse coding method of Olshausen and Field
(1996) and the neurally plausible locally competitive
algorithm (Rozell et al., 2008) approach to sparse
coding based on the principles of thresholding and
local competition. The locally competitive algorithm
is a dynamical systems approach to sparse coding that
models a neural circuit via membrane potential-like
quantities that govern the sparse coding response
properties along with inhibitory signals from other
sparse coding units (similar to neural inhibition).
Interestingly, Rozell et al. (2008) showed that their
approach to deriving the sparse coding responses
minimizes, under some constraints, the same loss
function used here (LASSO) to perform sparse coding.
Thus, results from the algorithm explored in this work
can be connected to neurally plausible implementations.
However, the LCA strategy mainly accounts for the
forward response properties; the basis functions are
still derived in a similar fashion to Olshausen and Field
(1996). The degree of sparseness from the LASSO
objective influences the learned basis functions, but it
is still possible that other methods of deriving the basis
functions may yield better classification results with a
higher degree of sparseness, which is a limitation to this
work.

Future work can relate to biological data, by
examining how well the model responses (with different
sparsity levels) match measures of neural activity.
Hosoya and Hyvärinen (2015) examined V2 properties
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in their hierarchical overcomplete ICA model, and one
can consider recent natural scenes data such as the
large-scale natural scenes dataset of Allen et al. (2021).
Their dataset provides V2 fMRI voxel data in response
to viewing natural scenes. The non-negative sparse
coding responses can be computed for the natural
scenes to attempt fitting a linear classifier to the data
with the model’s responses.

There is also interest in examining connections to
deep convolutional neural networks, which have been
shown to capture various cortical neural response
properties (Kriegeskorte, 2015; Yamins & DiCarlo,
2016; Pospisil et al., 2018; Cadena et al., 2019; Kindel
et al., 2019; Laskar et al., 2020). Such networks can
perform a form of sparse coding by thresholding
(setting to zero) responses with the ReLU activation
function depending on the values of the bias weights
(characterized by Bowren, 2021). A deep neural network
can be trained with a constraint of several degrees
of large negative bias weights to vary sparseness. If
classification accuracy suffers and inference improves
with larger kurtosis, then the result holds in another
type of sparse coding model that has been popular for
modeling cortical data. One could further test how the
deep neural network models (modified for the different
sparsity levels) capture neural data.

Non-negative sparse coding was a natural extension
to make the original sparse coding model comparable
with positive rectified overcomplete ICA, so it was
explored here. Interestingly, the corresponding
generative models of the two methods learned to
represent images with different structures. Moreover,
sparse coding found different structures depending on
the degree of sparsity in the model, which is fixed in
overcomplete ICA. Regular positive and negative sparse
coding was also found to yield different structures,
but non-negative sparse coding was explored here
because it performed better on the classification tasks
and eliminated the need for rectification of model V2
units. In comparison with other vision models, the V1
complex cell stage is fixed rather than learned as in
other image statistics models of visual cortical complex
cells (Hyvärinen & Hoyer, 2001; Karklin & Lewicki,
2009).

The differences between overcomplete ICA and
non-negative sparse coding may be attributed to the
different computational strategies of the two models:
overcomplete ICA has an explicit linear forward
transform, whereas non-negative sparse coding has
an implicit nonlinear forward transform. The strategy
of ICA is to find a set of filters whose responses to
images are as independent as possible, assuming a linear
transform (note that independence is not guaranteed,
because of the existence of higher-order couplings
that cannot be removed by linear transformations, and
by overcompleteness). Non-negative sparse coding,
by contrast, does not learn filters, but a dictionary

of basis functions that optimally reconstructs images
with a linear combination of a few (depending on
the regularization coefficient) of its basis functions.
However, the different objectives of overcomplete ICA
and non-negative sparse coding were not designed
to classify images or infer unseen image information
respectively. Roughly independent filter responses are
not obviously better than sparse coding responses
for image classification, and the advantage was not
large compared to the best non-negative sparse
coding configuration. For the image inference task,
image reconstruction error grew as the regularization
coefficient increased, but the reconstruction error for
the original unmodified image decreased despite having
the opposite effect on the input reconstruction error.
In other words, the reconstruction error for the image
without the deletion in the V1 complex stage was better
for a regularization coefficient of 0.5 than 4.0, but
when the deletion was present the opposite was true.
The better reconstruction of the original image can be
seen qualitatively in Figures 15 and 16 where 1×1 or
2×2 input regions were deleted. For example, consider
the back-bumper of the car in row 6 of Figure 15; if
the model were simply performing reconstruction, the
missing bumper region (blank space) of the car would
have been reconstructed, but the model introduces
new information into the image representation via its
basis functions. The difference in performance on the
image tasks was not an obvious result of the difference
in loss functions, and previous patch completion
(in-painting) results like that of Mairal et al. (2009)
only investigated inference in a single-layered model
with smaller receptive fields and one level of sparsity.
Here, the result of inference could be seen in single
patches rather than reconstructing an entire image from
its constituent image patches, and, more important,
the result across various levels of sparsity was also
demonstrated. Also, another difference between sparse
coding and ICA is that while ICA may be thought
of as similar to sparse coding in the complete case,
ICA tends to maximize coherence (redundancy) in its
filter matrix when extended to the overcomplete case
(Livezey et al., 2019). In maximum-likelihood inspired
ICA models, this factor is usually addressed by adding a
coherence control to the loss function. Score matching
ICA was incorporated in this model, similar to Hosoya
and Hyvärinen (2015), and although coherence control
was not explicitly enforced, score matching provides
an implicit, albeit data dependent, form of coherence
control.

It was found that the resulting non-negative sparse
coding units contained intuitively useful geometric
primitives such as curves and corners (Figures 6a and
6b), unlike overcomplete ICA, which found the units
defined by Hosoya and Hyvärinen (2015) shown in
Figure 6c mentioned in the Methods. Hosoya and
Hyvärinen (2015) obtained orientation-convergent
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units, which they noted might be related to corner
detection. Other hierarchical models have also resulted
in structures such as curves and corners, including
a two-layer sparse deep belief net model (Lee et al.,
2007), a two-layer model that included a statistically
optimal divisive normalization at the V1-like stage
(Coen-Cagli & Schwartz, 2013), and the second layer of
particular deep convolutional neural networks (Zeiler
& Fergus, 2014). There is a need in future work to
study differences in the resulting structure learned
across different classes of models and computations,
including intermediate layers of deep convolutional
neural networks. In this work, the focus was on a fixed
architecture and the influence of ICA versus sparse
coding.

For non-negative sparse coding, as the regularization
coefficient increases, the sizes of the geometric
primitives increase because the model is constrained to
represent entire images with only a few basis functions,
so each basis function must contain more information
to reduce reconstruction error. To see this more clearly,
consider the extremes of the regularization coefficient:
a coefficient of zero removes the L1 penalty term while
increasing the coefficient excessively leads to fewer and
fewer basis functions reconstructing the image until it
is reconstructed as an image of all zeros with no basis
functions. Reconstruction error increases with higher
values of the regularization coefficient because the
input representation is modified: more information has
to be inferred. A similar effect was seen with sparse
autoencoders trained on handwritten digits when
the degree of sparsity was increased (Makhzani &
Frey, 2015). This inductive inference mechanism has
potential use when sending information down a noisy
pipe. When parts of the signal become corrupted, these
parts can be safely interpolated by the contributions of
the basis functions. When the regularization coefficient
is low, these parts of the signal are more likely to
be interpreted by the model as genuine parts of the
signal. When the regularization coefficient is high, these
parts of the signal are inferred over because the model
does not have coefficients to spare on perturbations
which are not well represented by the dictionary if
the model is trained on uncorrupted signals. This
inductive inference mechanism may be useful in the
brain as well because of the stochasticity in the firing of
neurons.

In addition to geometric primitives, non-negative
sparse coding (with both choices of regularization
coefficient shown in Figures 6 and 7) also finds units that
maximally respond to texture-like repeating patterns.
Hosoya and Hyvärinen (2015) found some indication
of more localized texture patterns with overcomplete
ICA, but it was found here that the non-negative
sparse coding units by contrast produced texture-like
units covering the full extent of the receptive field.
Texture patterns were also apparent in intermediate

layers of deep convolutional neural networks (Zeiler
& Fergus, 2014). In practice, some of the unit types of
non-negative sparse coding and overcomplete ICA were
both maximally excited by similar images (Figure 8).
In non-negative sparse coding, lines that stop abruptly
were maximally excited by images similar to those
that maximally excite iso-oriented excitation with end
inhibition units in overcomplete ICA: images where
a line stops before reaching the end of the image.
However, most of the non-negative sparse coding unit
structures were different from those of overcomplete
ICA. Non-negative sparse coding was also much more
sparse than overcomplete ICA (Figures 9 and 10).
The distribution of non-negative sparse coding units
covers a different range of sparseness as measured
by kurtosis (Figure 9) compared with overcomplete
ICA. If non-negative sparse coding (with a certain
regularization coefficient) is advantageous for vision
tasks, this sparseness could be motivated by an efficient
coding paradigm.

Non-negative sparse coding with the appropriate
regularization coefficient better matched the level of
texture sensitivity in V2 as measured with the texture
modulation index. The modulation indices were
computed for the Brodatz texture dataset (Brodatz,
1966) in order to determine if the texture sensitivity
level would increase with an increasing regularization
coefficient, but it is important to note that other texture
datasets, like the one in Freeman et al. (2013), may
yield different optimal coefficients, so the exact values
should not be viewed as constants for the optimal V2
texture sensitivity match. Instead, the biological link
is the increase in texture sensitivity with the increase
in sparseness in the non-negative sparse coding model
up to a point. The ability of sparse coding to derive
bases with varying levels of sparsity allowed it to
derive bases with varying levels of texture sensitivity
as noted by Zhuang et al. (2021) with other sparse
models. It would also be interesting to see if the change
in kurtosis of the spectrally matched noise images
owing to the elimination of higher-order statistics
would elicit a model response pattern similar to that
found in an fMRI study by Puckett et al. (2020) where
humans viewed natural scenes degraded of higher order
statistics.

Interestingly, although non-negative sparse coding
had a high level of texture sensitivity (modulation index
of 0.334), its performance on the classification tasks
were poorer than that of non-negative sparse coding
with a regularization coefficient of 0.5. The implication
is that a model that spans the range of kurtosis of a
low and high kurtosis sparse coding may better match
V2. More on this approach is discussed elsewhere in
this article; however, the main takeaway is that, within
a sparse coding framework, texture sensitivity may
be increased at the expense of classification accuracy
(especially angle classification). This was likely due to
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the larger receptive fields of sparse coding with a higher
regularization coefficient.

Non-negative sparse coding performed worse overall
on image classification than overcomplete ICA followed
by point-wise rectification (see Figure 11). However,
vision is a rich process that pertains to far more than
distinguishing between classes of images. Vision systems
must learn to perform inference when information is
absent or lost due to error. Non-negative sparse coding
seems to address this, but not rectified overcomplete
ICA (see Figures 15 and 16). Perturbations to the
V1 complex representation were simply maintained
by rectified overcomplete ICA, whereas non-negative
sparse coding derives a representation much closer to
the original V1 representation before perturbations
were introduced. It is likely that non-negative
sparse coding with a regularization coefficient of
4.0 suffered the most on the line classification task
because the receptive fields of most units were too
large to pick up on the angle between the two lines.
However, the rectification step in overcomplete ICA
seemed to remove structural information in the ICA
representation, but this step was found to be necessary
to maintain its high image classification accuracy;
image classification accuracy decreased significantly
and performed worse than non-negative sparse coding
when rectification was not incorporated. Non-negative
sparse coding has an implicit built-in rectification
mechanism, so it did not experience a similar effect;
rather, the learned representations were derived such
that no negative responses were needed. Interestingly,
non-negative sparse coding reconstructed images and
completed missing regions, so although it suffered
at image classification, it excelled at image inference
and overcomplete ICA experienced the opposite. An
interesting question, but beyond the scope of this work,
is exploring the existence of any asymmetries in the
activations of non-negative sparse coding, especially
given the fact that changing the sign of an activation at
the V2 level does not merely correspond with a contrast
inversion.

Also, different reconstructions were formed with
different values of the regularization coefficient.
Larger values of the regularization coefficient led
to representations that were more sparse and had
more latent information introduced by the model.
Smaller values of the regularization coefficient led to
representations that were more faithful to the original
V1 representation. Indeed, when only a 1×1 V1
complex region was deleted, a regularization coefficient
of 2.0 yielded a smaller MSE; however, when a 2×2 V1
complex region was deleted a regularization coefficient
of 4.0 yielded a smaller MSE. This finding is consistent
with the idea that representations that are more sparse
introduce more prior knowledge into the representation
through the model’s basis functions. When the model
was constrained to make due with fewer basis functions,

more information had to be inferred. Depending
on the amount of missing information, different
degrees of sparsity were more useful in building
the model representation that best explained the
data.

One question that arises when attempting to add
inference and content generation mechanisms to vision
models is where in the brain do such mechanisms
exist? Inference within the receptive field may occur
throughout the visual cortex and is harder to localize,
but complete image generation (imagining images)
can be studied with fMRI. D’Esposito et al. (1997)
asked subjects to imagine images while in a fMRI
machine and found that the visual association cortex
was activated, but not the primary visual cortex. It
seems that content generation arises in higher visual
areas and should not be expected from low-level vision
models like the one described in this work. Instead, only
low-level local region inference might be expected in
the early visual system. The degree of sparsity expected
might be related to the vast overcompleteness in the
primary visual cortex (Olshausen & Lewicki, 2014).
See Olshausen et al. (2009) for an application of very
overcomplete and sparse coding.

One future directionmay be to attempt to incorporate
different degrees of sparsity into one overall model that
is both able to reconstruct images with low error and
perform inferences that best explain the data. Such a
model would learn a representation that spans the range
of kurtosis distributions in Figure 9. Another direction
is applying the perturbations of Figures 15 and 16 to
the original image. This way, missing information in
lower level receptive fields may be inferred via higher
level sparse coding, and future higher level models
may be shown to complete larger regions of images.
The original image was not modified in this work
because of limitations in the underlying V1 complex
energy model. The energy model pooled V1 responses
by taking the magnitude of each quadrature pair of
Gabor filters in polar coordinates, but discarding the
phase. Because the model contains a large spatial stride,
when reconstructing images with a randomized phase a
large part of the image structure was lost and inference
was unfeasible without attempting a method of phase
recovery (Gerchberg & Saxton, 1972).

In the future, more Gabor filters could be applied
at more spatial locations, orientations, and phases to
better recover the original image structure. An appealing
approach would be to learn a representation with sparse
coding for the V1 representation coupled with some
form of pooling. Besides pooling after V1, the sparse
coding derived V2 responses can be enhanced. A natural
improvement is to make the model convolutional
(Szlam et al., 2010) to decrease the redundancy in
the learned basis functions. One could also include a
more sophisticated approach to sparse coding, such
as approximating variance structure with a nonlinear

Downloaded from abstracts.iovs.org on 04/24/2024



Journal of Vision (2022) 22(2):19, 1–19 Bowren, Sanchez-Giraldo, & Schwartz 16

model as in Karklin and Lewicki (2005). This practice
gives the model an understanding of the underlying
distribution of the sparse coding responses. Yet another
appealing sparse coding approach is to learn both of
the bases at the same time as done by Boutin et al.
(2021), Zeiler and Fergus (2010). The role of nonlinear
computations such as divisive normalization motivated
by image statistics (e.g., Coen-Cagli & Schwartz, 2013)
can also be explored within such models. All these
methods allow for perturbations to be introduced in the
original image.

Conclusion

Non-negative sparse coding discovers a unique set
of intuitively useful basis functions that with different
degrees of sparsity may be advantageous for particular
vision tasks. Overcomplete ICA performs better than
non-negative sparse coding on image classification, but
performs poorly on image inference. With a high degree
of sparsity in a high-level visual model, non-negative
sparse coding is able to infer small regions of missing
information. The inference mechanism postulated here
is feasible.

Keywords: hierarchy, sparse coding, mid-level vision
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