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The perceptual representation of our environment does
not only involve what we actually can see, but also
inferences about what is hidden from our sight. For
example, in amodal completion, simple contours or
surfaces are filled-in behind occluding objects allowing
for a complete representation. This is important for
many everyday tasks, such as visual search, foraging,
and object handling. Although there is support for
completion of simple patterns from behavioral and
neurophysiological studies, it is unclear if these
mechanisms extend to complex, irregular patterns.
Here, we show that the number of hidden objects on
partially occluded surfaces is underestimated. Observers
did not consider accurately the number of visible objects
and the proportion of occlusion to infer the number of
hidden objects, although these quantities were
perceived accurately and reliably. However, visible
objects were not simply ignored: estimations of hidden
objects increased when the visible objects formed a line
across the occluder and decreased when the visible
objects formed a line outside of the occluder. Confidence
ratings for numerosity estimation were similar for fully
visible and partially occluded surfaces. These results
suggest that perceptual inferences about what is hidden
in our environment can be very inaccurate und
underestimate the complexity of the environment.

Introduction

In our cluttered environment, it often happens
that objects are partially or completely hidden by
other objects (Nanay, 2018). However, the perceptual
representation of those partially or fully occluded
objects is important for survival in the natural world:
missing a predator can be deadly and missing patches
of high-density of fruits leads to inefficient foraging.

Although visibility is reduced in the condition
of occlusion, the lack of visual information can be
compensated by our visual system via a constructive
process of perception, namely, perceptual completion
(Pessoa, Thompson, & Noë, 1998; Scherzer & Faul,
2019; Weil & Rees, 2011). In amodal completion
(Michotte, Thinès, & Crabbé, 1964; Øhrn, Svalebjørg,
Andersen, Ring, & Ekroll, 2019; Scherzer & Faul,
2019), partially occluded contours, surfaces or patterns
are perceptually filled-in behind occluders to allow
for a complete representation of the objects. Similar
perceptual completion occurs in sensory gaps that are
caused by the properties of the visual system, such as
the blind-spot (Ramachandran, 1992) or the foveal rod
scotoma (Gloriani & Schütz, 2019). Behavioral studies
have extensively investigated according to which rules
lines and contours are completed across sensory gaps
and occluders (van Lier, van der Helm, & Leeuwenberg,
1995). Neurophysiological studies have shown that
neurons in early visual cortex actively represent the
completed information (de Weerd, 2006; Komatsu,
2006; Thielen, Bosch, van Leeuwen, van Gerven, & van
Lier, 2019).

So far, the research on perceptual completion has
focused on simple objects, leaving the complexity and
the limitations of inferences about hidden information
largely unexplored. Humans are able to extract
efficiently the overall statistics of large visible areas and
groups of redundant objects (Whitney & Yamanashi
Leib, 2018), such as the average orientation (Dakin &
Watt, 1997) or color (Webster, Kay, & Webster, 2014)
of the objects in a set. Hence, one could expect that
humans should be able to transfer and extrapolate those
summary statistics easily to areas that are hidden from
plain sight by other objects in the foreground.

In this study, we investigated how complex, sparse,
and irregular patterns are completed behind an
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occluder, by probing the perceived number of visible
and hidden objects. Our results showed that whereas
the number of visible objects was perceived accurately
and reliably, the number of hidden objects was
strongly underestimated. This indicates that perceptual
inferences about occluded objects underestimate the
complexity of the environment and that the subjective
impression of a complete and rich representation of
our visual environment is illusory.

Methods

Design

In five experiments, we investigated the perception
of hidden objects. In experiments 1 to 4, the visual
scene consisted of a game board with different
numbers of game pieces and a mesh that could
act as an occluder (Figure 1A). In experiment 1,
numerosity discrimination judgments and confidence
judgments were collected under conditions with and
without occlusion. In experiment 2, direct estimations
of the number of visible and hidden objects were
measured. In experiment 3, the perceived amount of
occlusion was measured. Experiment 4 investigated
how the arrangement of the visible pieces influences
the estimation of the number of hidden pieces. In
experiment 5, the visual scene consisted of a night sky
with stars and clouds to test a more naturalistic context.

Observers

We recruited observers from https://www.prolific.co/.
All observers had normal or corrected-to-normal
vision and provided written informed consent. All
observers were naïve to the purpose of the experiment
and were paid for their participation. The experiments
were conducted in accordance with the Declaration
of Helsinki (1964) and approved by the local ethics
committee of the Psychology Department at Marburg
University (proposal number 2020-43k).

In experiment 1, 49 observers (24 women and 25
men, mean age = 34 years, range = 19–45) took part.
However, the data of five observers was incomplete due
to technical problems. We excluded the incomplete data
sets, resulting in a sample size of 44.

In experiment 2, 30 observers (18 women and 12
men, mean age = 34 years, range = 20–45) took part.

In experiment 3, 30 observers (20 women and 10
men, mean age = 33 years, range = 19–43) took part.
Data from one observer was excluded, because she/he
misunderstood the task instructions and reported the
perceived occluded area in the non-occluded condition
to be 1. The data of another observer was incomplete

and therefore also excluded. This resulted in a sample
size of 28.

In experiment 4, 31 observers (15 women and 16
men, mean age =33 years, range = 20–43) took part.
The data of one observer was incomplete and therefore
excluded. This resulted in a sample size of 30.

In experiment 5, 30 observers (17 women and 13
men, mean age = 33 years, range = 20–45) took part.
The data of one observer was incomplete and therefore
excluded. The data of another observer was excluded
because they switched the estimation strategy during
the experiment; estimations of the number of hidden
stars were almost always 0 in the first 98 trials and
larger than zero in the following trials. This resulted in
a sample size of 28.

Apparatus and stimuli

We used jsPsych (de Leeuw, 2015) to design the
interface. The size of the stimuli was fixed relative to
the resolution of the screen. Stimuli were displayed on
a grey background (R = G = B = 128).

In experiments 1 to 4, the scene consisted of a game
board with black and white game pieces and a mesh
as an occluder (see Figure 1A). The average luminance
over the black and white pieces, the luminance of
the occluder, and the game board were matched. We
first made the game board (luminance = 150) slightly
brighter than the grey background. Then the color of
the occluder was set to R = 100, G = 172, and B = 174,
resulting in a luminance of 150 (0.3R + 0.59G + 0.11B;
Recommendation ITU-R BT.601). The luminance of
the plain black and white pieces was then set to be 70 (R
= 68, G = 68, and B = 92) and 230 (R = 226, G = 226,
and B = 255), resulting in an average luminance of 150.
The occluders and game boards in all four experiments
had shading effects, where the light was coming from
the top-left corner to facilitate the impression of
occlusion. The game pieces had consistent high-lights
and shading effects. After adding the high-light effect
to the pieces, the overall luminance of the black and
white pieces was further adjusted to be 70 and 230 by
slightly changing the values in three channels. Black
and white game pieces were arranged randomly on
the cells of the game board. The occurrence of the
black and white pieces was balanced in each trial. The
size of the occluder was 280 × 407 pixels (width ×
height). The size of the game board was 390 × 507
pixels (width × height), containing 117 cells with 13
rows × nine columns. The size of game pieces was
21 pixels.

In experiments 1, 2, and 3, each occluder had
two patterns such that there would not be too many
repeated occluders between adjacent trials. For each
occluder, there were 12 holes, including six small ones
and six large ones. The size of the occluder (s, l) was
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Figure 1. Discrimination of numerosity and visual confidence (experiment 1). (A) Stimulus in the mixed condition, where a
non-occluded game board and an occluded game board were displayed simultaneously and had to be compared. (B) Psychometric
function for the selection task of one representative observer. Proportion of standard stimulus more numerous is shown as a function
of the difference in number between the standard and the comparison stimulus. (C) Psychometric function for the confidence task of
one representative observer. Proportion of high confidence responses is shown as a function of the difference in number between the
standard and the comparison stimulus. (D) Points of subjective equality (PSE) in the selection and the confidence task. Light colors
represent individual observers; saturated colors the mean across observers. Error bars represent 95% confidence intervals. The black
diagonal represents values with equal effects in the selection and the confidence task. Black horizontal and vertical lines represent
values where occlusion is not taken into account. Dashed red lines represent values where occlusion is completely taken into account
according to Equation 4. (E) Histogram of the amplitude modulation of the confidence. Thin vertical lines indicate the mean across
observers.
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determined by the diameter of the holes, where s and
l denote the diameter of the small and large holes in
pixels, respectively. The holes in the occluder were
arranged to be symmetric.

In experiment 1, there was only one size of occluder
(40, 60 pixels).

In experiment 2, there were two sizes of occluders:
small (40, 60 pixels) and large (30, 45 pixels).

In experiment 3, there were seven sizes of occluders,
denoting seven proportions of occlusion: 0.25 (25, 35
pixels), 0.36 (30, 45 pixels), 0.43 (35, 50 pixels), 0.50 (39,
56 pixels), 0.58 (40, 60 pixels), 0.65 (54, 60 pixels), and
0.76 (58, 63 pixels). When scaling the stimuli to three
scales (1, 0.75, and 0.5 times the original size of the
stimuli), the occluder, the game board, and the game
pieces were scaled simultaneously.

In experiment 4, the occluder consisted of two
vertical (for numerosities of 5, 10, and 12) or horizontal
(for numerosities of 7 and 14) bars. For the vertical
occluder, each of the two bars covered two columns of
the game board. For the horizontal occluder, each of
the two bars covered three rows of the game board.

In experiment 5, the scene consisted of a night
sky with stars and clouds. The size of the night sky
image with clouds and stars (Isky_cloud_star) was 500 ×
500 pixels. The night sky images were constructed by
a weighted average of multiple images: the color of
the background night sky image (Isky) was changing
gradually, from light blue (R = 49, G = 87, and B =
133) to dark blue (R = 10, G = 25, and B = 44) from
the upper left to the lower right. The luminance of
the original cloud image (Icloud) was 255 (R = G = B
= 255). There were two sizes and luminance of the
original star image (Istar). The size of the large stars was
3 × 3 pixels, and the luminance was 171 (R = G = 176,
and B = 128). The size of the small stars was 2 × 2
pixels, and the luminance was 213 (R = G = 220, and B
= 160). Large and small stars were arranged randomly
on the sky.

The occurrence of the large and small stars was
balanced in each trial. The night sky image with
clouds and stars (Isky_cloud_star) was then generated by
a weighted average of the background sky image (Isky),
the original cloud image (Icloud), and the original star
image (Istar). The weight for the cloud image (wcloud) was
obtained by adjusting a noise map. A Brownian (1/f2)
noise map of the same size as the cloud image was first
generated. Then the noise map was shifted downward
by subtracting 0.6, after which values smaller than 0
were clamped at 0. The weight for the star image (wstar)
was generated by applying Gaussian smoothing with
a variance of 0.9 and 1.2 for small and large stars,
respectively. In such a way, the night sky with clouds
and stars was obtained by:

Isky_cloud_star = (1 − wcloud )(
(1 − wstar) Isky + wstarIstar

) + wcloud Icloud (1)

Procedure

In all five experiments, each trial started with a
fixation point in the center of the screen without a time
limit. After pressing any key, the occluder(s) appeared
first, followed by the game board(s) with game pieces
after 300 ms. These stimuli disappeared after 2000 ms
in experiment 1 and 1250 ms in experiments 2, 3, and 4,
followed by different questions to the observers. For the
questions in all of the experiments, there was no time
limit.

Experiment 1: Discrimination of numerosity and
confidence judgments

In experiment 1, two game boards with pieces
were displayed simultaneously. Observers had to first
perform a discrimination task with the question “Which
game board has more pieces on it?” They could choose
their answer by clicking the “left” or “right” button
arranged horizontally. After that, they had to answer
the question “How confident are you about your
judgement?” by clicking the “High” or “Low” button
arranged vertically with the “High” button on top.

For each pair of numerosities, three conditions
were investigated: (1) both game boards were fully
visible (non-occluded), (2) both game boards were
partially occluded (occluded), and (3) one of the game
boards was fully visible, and the other was partially
occluded (mixed). A total of 11 different numerosities
were investigated. The number of visible pieces of the
standard stimulus was always 10. For the comparison
stimulus, the numbers of visible pieces were two, four,
six, eight, nine, 10, 11, 12, 14, 16, and 18. For the
mixed condition, the standard was occluded and the
comparison was not occluded. Each stimulus was
repeated 10 times, with a random arrangement of pieces
each time.

In total, there were 352 trials, including 330 test
trials (11 numerosities × 3 conditions × 10 repetitions),
11 obscured trials where some of the game pieces
were partially obscured in the mixed condition (11
numerosities × 1 condition × 1 repetition), and 11
swapped trials where the standard was not occluded and
the comparison was occluded in the mixed condition
(11 numerosities × 1 condition × 1 repetition). We
added the obscured trials where the game pieces were
partially obscured to emphasize for the observers that
there might be pieces hidden behind the occluder. We
added swapped trials such that the occluded condition
did not always contain 10 pieces. Obscured and swapped
trials were not analyzed.

At the end of the experiment, observers had to finish
a questionnaire regarding the experiment: (1) Did you
have the feeling that sometimes the game board was
occluded by the green mesh? (2) Did you have the
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feeling that sometimes the green mesh was occluded by
the game board? (3) In your opinion, could some of the
pieces have been behind the green mesh?

Experiment 2: Numerosity estimation of visible and
hidden objects

In experiment 2, observers had to first perform an
estimation task: “How many pieces were completely
or partially visible on the game board?” by selecting
from a drop-down menu (with options ranging from
0 to 40 with a step size of 1). After that, they were
asked “Were parts of the game board hidden by
the green mesh?” They could answer “Yes” or “No”
by clicking on the buttons arranged horizontally.
Then, they had to perform a second estimation task:
“How many pieces were completely hidden behind the
green mesh?” by selecting from the drop-down menu,
which had the same setting as the first estimation
task.

We inserted the binary judgment task before the
estimation of the number of hidden pieces for two
reasons. First, we wanted to check whether observers
perceived occlusion in all occlusion trials during the
experiment. Second, we aimed at leading the observers
to consider the occlusion when they estimated the
number of hidden pieces subsequently. In terms
of internal consistency, responding with yes to the
occlusion question should prompt observers to
consider the occlusion for the subsequent estimation
task.

The number of visible pieces varied from six to 14
with a step size of one, resulting in a total of nine
numerosities. Each stimulus was repeated 10 times,
with a random arrangement each time. In total, there
were 279 trials, including 270 test trials (9 numerosities
× 3 conditions × 10 repetitions) and nine obscured
trials where the game pieces were partially obscured (9
numerosities × 1 condition × 1 repetition).

The questions in the survey were the same as in
experiment 1.

Experiment 3: Estimation of occluded area
In experiment 3, observers had to perform one

estimation task: “What is the maximum number of
pieces that might be behind the occluder?” by dragging
a slider ranging from 0 to 117 with a step size of one.
One hundred seventeen was the maximum because that
was the total number of cells on the game board.

For the occluded relative to the visible area on the
game board, seven proportions were investigated:
0.25, 0.36, 0.43, 0.50, 0.58, 0.65, and 0.76. For each
proportion, three scales were displayed: 1, 0.75, and
0.5 times the original size. For the occluded condition,
each stimulus was repeated 10 times, resulting in 210
trials (7 proportions × 3 scales × 10 repetitions). For

the non-occluded condition, each stimulus appeared
once, resulting in additional 21 trials (7 proportions
× 3 scales × 1 repetition). This resulted in 231 trials
in total.

Experiment 4: Effect of regularity on numerosity
estimation of visible and hidden objects

In experiment 4, observers had to first perform an
estimation task: “How many pieces were visible on the
game board?” After that, they had to perform a second
estimation task: “How many pieces were completely
hidden behind the green bars?” Both of the questions
could be answered by selecting from a drop-down
menu (with options ranging from 0 to 40 with a step
size of 1).

The number of visible pieces was five, seven, 10,
12, and 14. For numerosities five, 10, and 12, the
shape of the occluder was two vertical bars. For
numerosities seven and 14, the shape of the occluder
was two horizontal bars. For the irregular condition, we
specified five patterns such that the pieces would not
form a line. For the regular conditions, the game pieces
were arranged in lines either across (regular-across) or
outside (regular-outside) the occluder, such that the
expected number of hidden pieces was the same for
the same numerosities. Each condition was repeated 10
times, resulting in a total of 150 trials (5 numerosities ×
3 conditions × 10 repetitions).

At the end of the experiment, observers had to finish
a questionnaire with a forced binary choice regarding
the experiment: (1) Did you have the feeling that the
game board was partially occluded by the green bars?
(2) In your opinion, could some of the pieces have been
behind the green bars?

Experiment 5: Numerosity estimation of visible and
hidden objects in a naturalistic scene

In experiment 5, observers had to first perform an
estimation task: “How many stars were visible?” by
selecting from a drop-down menu (with options ranging
from 0 to 40 with a step size of 1). After that, they were
asked: “What proportion of the sky was covered by
clouds?” by dragging a slider ranging from 0% to 100%.
Finally, they had to perform the third estimation task:
“How many stars were hidden behind the clouds?” by
selecting from the drop-down menu, which had the
same setting as the first estimation task.

The number of visible stars varied from six to 14
with a step size of one, resulting in a total of nine
numerosities. For each numerosity, the proportion that
the sky was covered by the clouds varied from 0.3 to
0.7 with a step size of 0.02, resulting in 21 proportions.
Each stimulus occurred only once. In total, there were
189 trials (9 numerosities × 21 proportions).
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Data analysis

Results in this study were analyzed with 1-way
repeated-measures ANOVAs and t-tests (two
tailed). The alpha-level was set to 0.05. A nonlinear
least-squares fitting was adopted to fit the models.

In experiment 1, the proportion of choosing the
comparison as more numerous was fitted as a function
of the difference between the standard and comparison
numerosity using a cumulative Gaussian function:

� (x; α; β; γ ; λ)

= γ + (1 − γ − λ)
2

[
1 + er f

(
x − α

β
√
2

)]
, (2)

where α indicates the mean of the cumulative Guassian,
β indicates the standard deviation, γ is the guess rate,
and λ indicates the lapse rate. The parameters that were
fitted through the least-square fitting were α, β, and
λ, with γ = λ. The point of subjective equality (PSE)
was defined as the mean of the underlying cumulative
Gaussian.

The proportion of high confidence responses was
fitted as a function of the difference between the
standard and comparison numerosity using the inverse
of the probability density function (PDF) of Gaussian
(Gallagher, Suddendorf, & Arnold, 2019; Luna,
Serrano-Pedraza, Gegenfurtner, Schütz, & Souto,
2021):

C (x) = 1 − ae− 1
2 (

x−μ

σ
)2 (3)

where μ and σ indicate the mean and standard deviation
of Guassian, a is the scaling factor of the amplitude
and modulates the minimum confidence judgment. The
PSE of the confidence judgment was defined as the
mean of the underlying Gaussian.

The numerosity estimations in experiments 2, 3, and
4, as well as the estimates of numerosity and hidden
proportion in experiment 5, were fitted using a linear
function f(x) = p1x + p2, where p1 indicates the slope
and p2 indicates the intercept.

The precision of the direct estimations in experiments
2 to 5 was measured by the coefficient of variation, that
is, the ratio of the standard deviation over the mean.

Calculation of the ground-truth number of
hidden objects

In experiments 1 and 2, the hidden area of the
game board (Sh) was obtained by counting the grid
cells where pieces would be completely hidden by the
occluder. The visible area of the game board (Sv) was
obtained by subtracting the completely hidden cells
from the total number of cells of the game board.

Assuming a homogeneous distribution (i.e. a
constant density), the number of objects hidden behind
an occluder (nh ) can be estimated based on the number
of visible objects (nv) and the area of the visible (Sv )
and occluded (Sh) parts:

nh = nv

Sv

Sh (4)

We want to point out that nv

Sv
corresponds to the

density of visible objects in the visible area.

Bayesian model for the estimation of the
number of hidden objects

Assuming a homogeneous distribution of objects to
the whole surface, the question how many objects are
expected to be located in occluded and nonoccluded
parts of the surface can be formalized for discrete
locations (as in the game board of experiment 2) as the
stochastic problem of drawing from an urn with two
categories of balls without replacement. The number
of visible (Nv) and hidden cells (Nh) corresponds to
the number of the two categories of balls in the urn.
The total number of objects (nv+h) corresponds to the
number of draws from the urn. The expected number of
visible (nv) and hidden (nh) objects then corresponds to
the resulting number of balls from the two categories.
Upper- and lowercase characters denote quantities of
the urn and the samples, respectively. A hypergeometric
distribution allows to calculate the probability that a
certain number of objects (nv) are visible given the total
number objects (nv+h):

P (nv|nv+h) =

(
Nv

nv

)
·
(
Nv+h − Nv

nv+h − nv

)
(
Nv+h
nv+h

) (5)

However, the total number of objects is unknown
to the observers and they are faced with the inverse
problem of estimating the total number of objects
given the visible number of objects. According to Bayes
theorem (for reviews see Ma, Kording, & Goldreich,
2022; Mamassian, Landy, & Maloney, 2002), this
posterior distribution (P(nv + h|nv)) can be estimated
by multiplying the likelihood distribution (P(nv|nv + h))
with the prior probability (P(nv + h)) of the total number
of objects, divided by a normalization factor (P(nv)):

P (nv+h|nv ) = P (nv|nv+h) · P (nv+h)
P (nv )

(6)

We fitted two different Bayesian models to the data
(Figure 3), either with a prior for a constant total
number of objects or with a prior for a constant number
of hidden objects. These priors were modeled with
Gaussian distributions and each model had two free

Downloaded from abstracts.iovs.org on 04/24/2024



Journal of Vision (2023) 23(2):1, 1–20 Men, Altin, & Schütz 7

parameters, the mean and the standard deviation of the
prior distribution. The Bayesian information criterion
(Schwarz, 1978) and relative model weights (Burnham
& Anderson, 2002) were calculated for each observer to
compare the two models.

Results

Experiment 1: Discrimination of numerosity and
confidence judgments

In experiment 1 (N = 44), two game boards
with variable numbers of game pieces appeared
simultaneously. For each pair of numerosities, three
conditions were investigated: (1) both game boards
were fully visible (non-occluded), (2) both game
boards were partially occluded (occluded), and (3) one
of the game boards was fully visible, and the other
was partially occluded (mixed; see Figure 1A). One
of the game boards had a fixed number of visible
pieces of 10 (standard) and the number of visible
pieces on the other game board varied from two to 18
(comparison). In the mixed condition, the standard
was occluded and the comparison was not occluded.
We calculated the difference between standard and
comparison numerosity so that zero indicates that
both game boards had the same number of visible
pieces. In each trial, observers had to perform two
tasks. In the selection task, observers had to choose the
game board with more game pieces. In the subsequent
confidence task, observers had to report if their
confidence about that numerosity selection was high
or low.

Figure 1B and C shows psychometric functions
of one representative observer. In the selection task,
the proportion of choosing the standard as more
numerous increased with increasing difference between
standard and comparison numerosity (Figure 1B). In
the confidence task, the proportion of high confidence
responses was high when the absolute difference
between standard and comparison was large and
minimal when both were similar (Figure 1C).

The amplitude modulation of the confidence
function (Equation 3) allows to quantify the overall
uncertainty about the numerosity of the game boards
(Figure 1E). The confidence amplitude was not
significantly different (F(2,84) = 2.38, p = 0.099) in the
non-occluded (0.71 ± 0.19), occluded (0.73 ± 0.24),
and mixed condition (0.76 ± 0.21). This indicates
that observers were similarily confident in the mixed
and the occluded condition as in the non-occluded
condition, although they were objectively missing
information due to the occlusion and should have
been less confident about their responses than in the
non-occluded condition.

In both, the selection and the confidence task, the
point of subjective equality (PSE) quantifies which
comparison numerosity was perceived equal to the
standard numerosity. As expected, the PSE was close to
zero in the occluded and the non-occluded conditions
because here the standard and the comparison stimuli
were actually identical (Figure 1D). In the mixed
condition, we expected that observers assumed that the
partially occluded standard stimulus had more pieces
than the ones that were visible and this should lead to
a leftward shift of the psychometric function and a
negative PSE. According to Equation 4, the PSE should
be at −2.7, indicating that 2.7 pieces are perceived to be
hidden behind the occluder. In the selection task, the
actual PSE was −1.45 (±1.07), which was significantly
smaller than zero (t(43) = −9.00, p < 0.001), but also
significantly larger than the expected number based
on Equation 4 (t(43) = 7.80, p < 0.001). This indicates
that observers underestimated the number of hidden
pieces. Similarly, the point of minimum confidence was
−1.99 (±1.08), which was significantly smaller than
zero (t(43) = −12.21, p < 0.001), but also significantly
larger than the expected number (t(43) = 4.33, p <
0.001). The PSEs in the selection and the confidence
task were highly correlated (r(42) = 0.56, p < 0.001).
The fact that both, the PSE in the selection task and the
point of minimum confidence in the confidence task
underestimated the number of hidden pieces is evidence
that this underestimation was truly a perceptual effect
and not merely a response bias (Gallagher et al., 2019;
Luna et al., 2021; Maldonado Moscoso, Cicchini,
Arrighi, & Burr, 2020).

This underestimation of the number of hidden
objects might have been caused by multiple reasons.
First, observers might have not perceived the game
board as being occluded at all. However, this is
unlikely, because in a post-experiment questionnaire
86.36% of the observers stated that they had the
impression that the game board was occluded by the
green mesh sometimes, and 95.45% of them stated
that some of the pieces could have been hidden
behind the green mesh. Second, observers might
have underestimated the number of visible pieces
(nv), which would also lead to an underestimation of
the number of hidden pieces according to Equation
4. Because the selection task provides only relative
numerosity judgments, this cannot be excluded based
on the data of experiment 1. Third, observers might
have been underestimating the proportion of the
occluded relative to the visible area of the game board
(Sh/Sv), which would also lead to an underestimation
of the number of hidden pieces. Fourth, none of the
reasons above holds and observers might not have been
estimating the number of hidden pieces according to
Equation 4 at all.

We conducted four additional experiments to test
these explanations.
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Experiment 2: Numerosity estimation of visible
and hidden objects

To investigate whether the underestimation of
hidden objects in experiment 1 was caused by an
underestimation of the number of visible objects
(nv in Equation 4), we asked observers to report the
number of visible and hidden game pieces separately in
experiment 2.

In experiment 2 (N = 30), only one game board
with game pieces appeared in each trial. For each
numerosity, three conditions were investigated: (1) the
game board was fully visible (non-occluded), (2) the
game board was partially occluded by a small occluder
as used in experiment 1 (small-occluder; Figure 2A),
and (3) the game board was partially occluded by
a large occluder with smaller holes (large-occluder;
Figure 2B). In each trial, observers had to perform two
direct estimation tasks and a binary choice task. In the
first direct estimation task, observers had to estimate
the number of visible pieces. In the subsequent choice
task, observers had to report if they perceived the game
board as being occluded or not. Finally, in the second
direct estimation task, observers had to estimate the
number of hidden pieces.

The binary occlusion task confirmed that the
manipulation was successful and observers perceived
the occlusion accurately. The average proportion of
occlusion reports was 12.96% (±11.86%), 96.11%
(±7.98%), and 94.15% (±9.69%) in the conditions of
non-occluded, occluded with small and large occluders,
respectively.

Figures 2C and D show the numerosity estimation of
one representative observer as a function of the actual
number of visible pieces. We fitted a linear function
to quantify the dependency on the number of visible
pieces (slope; Figure 2E) and a general bias due to
occlusion (intercept; Figure 2F).

For the estimation of visible pieces, both the slopes
and intercepts were not significantly different (slope:
F(2,56) = 1.26, p = 0.291; intercept: F(2,56) = 0.44, p
= 0.649) between the non-occluded (slope 0.81 ± 0.13,
intercept 1.31 ± 0.89), small-occluder (slope 0.78 ±
0.15, intercept 1.57 ± 0.98), and large-occluder (slope
0.82 ± 0.17, intercept 1.36 ± 1.30) conditions. Slopes
around 0.8 and intercepts around one in all three
conditions indicate that observers slightly overestimated
the number of visible pieces for small numerosities
and slightly underestimated for large numerosities.
Nevertheless, in general, observers were able to estimate
the number of visible pieces quite accurately, making
it clear that the underestimation of hidden objects in
experiment 1 was not caused by the underestimation of
visible objects.

For the estimation of hidden pieces, we would expect
that for the same size of the occluder, observers assume
more pieces were hidden behind the occluder with

larger numerosities, and for the same numerosity, more
pieces were hidden behind the large than the small
occluder. According to Equation 4, the expected slope
of the linear fit should be 0.27 and 1.05 for the small
and the large occluder, respectively. Although the slopes
were significantly different (t(29) = −2.30, p = 0.029)
in the small-occluder (0.03 ± 0.20) and large-occluder
(−0.02 ± 0.19) conditions, both were significantly
smaller than expected (small-occluder: t(29) = −6.74,
p < 0.001; large occluder: t(29) = −30.39, p < 0.001).
The intercepts were significantly different from each
other (t(29) = 2.58, p = 0.015) and significantly larger
than 0 in the small-occluder (1.80 ± 2.17, t(29) =
4.54, p < 0.001) and large-occluder (2.44 ± 2.43, t(29)
= 5.51, p < 0.001) conditions. These intercepts were
roughly consistent with the PSE shifts in experiment
1, of about −1.45 and −1.99 in the selection and the
confidence task, respectively. In the non-occluded
condition, slopes (0.02 ± 0.04, t(29) = 2.69, p =
0.011) and intercepts (0.04 ± 0.54, t(29) = 0.36, p =
0.723) were close to zero, indicating that observers
did not hallucinate hidden pieces when there was no
occlusion.

Interestingly, some observers showed positive and
some observers showed negative correlations between
the estimation of the number of hidden pieces and the
number of visible pieces (Figure 2E). We evaluated if
the overall strong underestimation of the number of
hidden pieces and the different estimation patterns
would be compatible with a Bayesian model combining
information about the number of visible pieces and
the occluder with a prior (see Figure 3). We compared
two models with either a constant prior on the total
number of pieces or a constant prior on the number
of hidden pieces. The model with a constant prior on
the total number of pieces predicts a decrease in the
estimation of hidden pieces with increasing number
of visible pieces and was the more likely model for
11 of 30 observers (average model weight 36%). For
these observers, the average prior (7.21 ± 4.07) slightly
underestimated the average number of ten visible pieces.
The model with a constant prior on the number of
hidden pieces predicts an increase in the estimation of
hidden pieces with increasing number of visible pieces
and was the more likely model for 19 of 30 observers
(average weight 64%). For these observers, the prior
was 2.48 ± 1.45 hidden pieces. Hence, the data of most
observers was compatible with a constant prior of
about two hidden pieces.

Overall, the results of experiment 2 indicate that
observers assumed a constant number of about two
hidden pieces, regardless of the size of the occluder and
the number of visible pieces. According to Equation 4,
the estimation of hidden pieces depends on the
estimation of visible pieces (nv) and the proportion of
the occluded relative to the visible area of the game
board (Sh/Sv). Experiment 2 showed that observers
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Figure 2. Numerosity estimation of visible and hidden objects. (A) Stimulus with a small occluder. (B) Stimulus with a large occluder.
(C) Perceived number of visible pieces as a function of actual number of visible pieces for one representative observer. Colored lines
represent linear fits of the data; the black line represents accurate estimation. (D) Perceived number of hidden pieces as a function of
actual number of visible pieces for one representative observer. Solid lines represent linear fits of the data; dashed lines represent the
expected number of hidden pieces obtained from the number of visible pieces and the proportion that the game board was occluded
(Equation 4). (E) Slope of the linear fit for the number of visible and hidden pieces. Light colors represent individual observers;
saturated colors the mean across observers. Error bars represent 95% confidence intervals. The black diagonal represents values with
equal effects for visible and hidden pieces. Colored dashed lines represent expected values for the hidden pieces. The black dashed

→
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←
line represents values of unity, where perceptual estimates of the number of visible pieces is accurate. Black solid lines represent
values of zero, where perceptual estimates are independent of the number of visible pieces. (F) Intercept of the linear fit for the
number of visible and hidden pieces. Conventions are the same as in E.

were able to accurately estimate the number of visible
pieces nv but still were very inaccurate in the estimation
of the number of hidden pieces. Possibly, they were
unable to estimate the relative proportion of occluded

and visible area of the game board (Sh/Sv) (Palmer,
Brooks, & Lai, 2007; Scherzer & Ekroll, 2015). To
investigate whether the underestimation was caused
by underestimating the occlusion, we asked observers

Figure 3. Bayesian model of the estimation of the number of hidden objects. (A) Likelihood distribution indicating the probability of a
certain number of visible pieces given a total number of pieces (Equation 5). (B) Prior distribution with a constant number of total
pieces. (C) Posterior distribution, combining the likelihood from A and the prior from B (Equation 6). (D) Average perceived number of
hidden pieces for those 11 participants whose data are best explained by the model with a constant prior on the total number of
pieces. (E) Prior distribution with a constant number of hidden pieces. (F) Posterior distribution, combining the likelihood from A and
the prior from E (Equation 6). (G) Average perceived number of hidden pieces for those 19 participants whose data are best explained
by the model with a constant prior on the number of hidden pieces. (H) Model weights for all participants. The horizontal lines
indicate the average weight for each of the models. A, B, C, E, and F The grayscale colormap represents probabilities and is normalized
for each panel separately to its minimum and maximum to optimize the visibility of individual distributions. In fact, the likelihood
distribution is much broader than the prior distribution, such that the posterior is heavily biased towards the prior. D, G Dashed lines
represent the ground-truth value according to Equation 4. Solid lines represent model fits.
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Figure 4. Estimation of occluded area. (A) Stimuli of the original size as in experiments 1 and 2. (B) Stimuli scaled 0.75 times relative to
the original size. (C) Estimation of the proportion of the occluded area as a function of the actual occluded area for one
representative observer. Solid lines represent linear fits of the data; dashed lines represent values with an accurate match between
estimated and actual proportion of the occluded area. (D) Histogram of the slope of the linear fit for the maximum number of hidden
pieces. Thin vertical lines indicate the mean across observers. (E) Histogram of the intercept of the linear fit for the maximum number
of hidden pieces. Thin vertical lines indicate the mean across observers.

to report the proportion of the occluded area in
experiment 3.

Experiment 3: Estimation of occluded area

In experiment 3 (N = 28), the proportion of occluded
area and the spatial scale of the game board was varied
(Figures 4A, B).

For each proportion of occluded area, two conditions
were investigated: (1) the game board was fully visible
(non-occluded), and (2) the game board was partially
occluded (occluded). In each trial, observers had
to perform an estimation task, where they had to
estimate the maximum number of pieces that might
be behind the occluder. This estimation was converted
into a proportion of occluded area to compare

it directly with the actual proportion of occluded
area.

Figure 4C shows the data of one representative
observer. The estimated proportion of the occluded area
was analyzed as a linear function of the actual occluded
area. In the occluded condition, the slope (Figure 4D)
of the linear fit was slightly larger than one (1.09 ±
0.22, t(27) = 2.24, p = 0.034), and the intercept (Figure
4E) was slightly smaller than 0 (−0.05 ± 0.13, t(27) =
−2.22, p = 0.035). This indicates that observers were
able to accurately estimate the occluded area. Hence, the
underestimation of hidden pieces in experiments 1 and
2 was not caused by underestimating the proportion
of the occluded relative to the visible area of the
game board (Sh/Sv). A remaining explanation for the
inaccurate estimation of the number of hidden pieces
would be that observers simply did not pay attention to
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the visible pieces for their estimation of hidden pieces.
Therefore, we tested in experiment 4, if the arrangement
of the visible pieces modulates the estimation of hidden
pieces.

Experiment 4: Effect of regularity on numerosity
estimation of visible and hidden objects

Because previous studies showed that simple lines
and contours are perceptually completed behind
occluders (Davis & Driver, 1994; Kanizsa, 1979;
Michotte, Thinès, & Crabbé, 1964), the irregular
arrangement of the game pieces might have been too
complex for accurate perceptual completion to occur.
To study if the estimation of the number of hidden
pieces is modulated by the regularity of the visible
pieces’ arrangement, we compared different regular and
irregular arrangements in experiment 4.

In experiment 4 (N = 29), one game board with game
pieces appeared. For each numerosity, three conditions
were investigated: (1) pieces arranged irregularly,
like in experiments 1 and 2 (irregular), (2) pieces
arranged regularly, forming a line across the occluded
area (regular-across; Figure 5A), (3) pieces arranged
regularly, forming a line outside of the occluded area
(regular-outside; Figure 5B). To facilitate the generation
of regular patterns across and outside the occluder,
the shape of the occluder was changed to vertical or
horizontal bars. In the irregular and regular-outside
conditions, the expected number of hidden pieces was
obtained according to Equation 1. In the regular-across
condition, the expected hidden pieces are the ones
along the straight path formed by the visible pieces.
We arranged the visible pieces such that the expected
number of hidden pieces was the same in both regular
conditions across and outside the occluder. In each
trial, observers had to perform two direct estimation
tasks like in experiment 2 to estimate the number of
visible and hidden pieces separately. Like in experiment
2, we analyzed the estimated number of visible and
hidden pieces as a linear function of the actual number
of visible pieces (Figures 5C, D).

For the estimation of visible pieces, the slopes
were not significantly different in the three conditions
(F(2,56) = 2.60, p = 0.084). They were slightly smaller
than 1 in the irregular condition (0.93 ± 0.11, t(29) =
−3.43, p = 0.002), but not in the regular-across (0.98
± 0.12, t(29) = −0.80, p = 0.428) and regular-outside
(1.00 ± 0.08, t(29) = 0.24, p = 0.816) conditions.
The intercepts were significantly different in the three
conditions (F(2,56) = 3.29, p = 0.044). They were
slightly larger than zero in the irregular condition
(0.48 ± 0.71, t(29) = 3.67, p < 0.001), but not in the
regular-across (0.23 ± 0.78, t(29) = 1.64, p = 0.111)
and regular-outside (−0.02 ± 0.57, t(29) = −0.17, p =
0.867) conditions. This indicates that the estimation

of the number of visible pieces was accurate, for both
irregular and regular patterns of pieces.

However, the regularity affected the estimation of
the number of hidden pieces. For the estimation of
hidden pieces, the slope is expected to be 0.8 according
to Equation 4. In the estimation task, the slopes were
significantly different from each other (F(2,56) = 3.48,
p = 0.038) and significantly smaller than 0.8 in the
irregular (0.15 ± 0.20, t(29) = −17.88, p < 0.001),
regular-across (0.27 ± 0.24, t(29) = −12.36, p < 0.001),
and regular-outside (0.08 ± 0.29 , t(29) = −13.83,
p < 0.001) conditions. The intercepts in the irregular,
regular-across and regular-outside conditions were
not significantly different from each other (F(2,56)
= 0.58, p = 0.565). All intercepts were significantly
larger than zero (irregular: 1.62 ± 3.00, t(29) = 2.95,
p = 0.006; regular-outside: 1.70 ± 3.32, t(29) = 2.81,
p = 0.009; and regular-across: 2.14 ± 2.60, t(29) = 4.51,
p < 0.001).

The slope in the regular-across condition was smaller
than expected but higher than that in the other two
conditions. This indicates that when the visible pieces
formed a line across the occluded area of the game
board, the underestimation of hidden pieces was still
present, but reduced. The slope in the regular-outside
condition was even smaller than that in the irregular
condition, indicating that when the visible pieces
formed a line separately from the occluded areas,
the underestimation was even more pronounced
compared to irregular patterns. This modulation by the
arrangement of the visible pieces clearly shows that
observers used the number and arrangement of the
visible pieces and were not simply ignoring them when
estimating the number of hidden pieces.

Nevertheless, observers did not use the information
about the number of visible pieces and the area of
occlusion to accurately estimate the number of hidden
pieces in experiments 1, 2, and 4. One remaining
explanation might be that observers did not share
the assumption that the density of pieces is constant
across the artificial, man-made game board. If the
pieces are not uniformly distributed across the game
board, the number of hidden pieces cannot be sensibly
estimated using Equation 4. To this end, we tested a
more naturalistic scene in the final experiment 5.

Experiment 5: Numerosity estimation of visible
and hidden objects in a naturalistic scene

To investigate whether the underestimation of
hidden pieces in the previous experiments was caused
by assuming a non-uniform distribution in an artificial,
man-made scene, we presented a more naturalistic scene,
consisting of a night sky with randomly arranged stars
and clouds covering parts of the sky (see Figure 6A).
In experiment 5 (N = 28), an image of the night sky
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Figure 5. Effect of regularity on numerosity estimation of visible and hidden objects. (A, B) Stimuli in the regular-across (left) and
regular-outside (right) conditions. (C) Perceived number of visible pieces as a function of actual number of visible pieces for one
representative observer. Colored lines represent linear fits of the data; the black line represents accurate estimation. (D) Perceived
number of hidden pieces as a function of actual number of visible pieces for one representative observer. Solid lines represent linear
fits of the data; dashed lines represent the expected number of hidden pieces obtained from the number of visible pieces and the
proportion that the game board was occluded. (E) Slope of the linear fit for the number of visible and hidden pieces. (F) Intercept of
the linear fit for the number of visible and hidden pieces. E, F Conventions are the same as in Figure 2E.
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Figure 6. Numerosity estimation of visible and hidden objects in a naturalistic scene. (A) Stimuli of a night sky with stars and clouds.
Observers had to report the number of visible stars, the proportion of the sky covered by clouds and the number of stars hidden by
clouds. (B) Perceived number of hidden stars as a function of the objectively expected number of hidden stars for one representative
observer. The objectively expected number of hidden stars was obtained from the actual number of visible stars and the actual
proportion of the sky covered (Equation 4). The solid line represents the linear fit of the data. (C) Perceived number of hidden stars as
a function of subjectively expected number of hidden stars for one representative observer. The subjectively expected number of
hidden stars was obtained from the perceived number of visible stars and the perceived proportion of occlusion (Equation 4). The
solid line represents the linear fit of the data. (D) Slope of the linear fit for the perceived number of visible stars, the perceived
proportion of occlusion, the perceived number of hidden stars as a function of objectively or subjectively expected number of hidden
stars. Light colors represent individual observers; saturated colors the mean across observers. Error bars represent 95% confidence
intervals. The black solid line represents values of unity, where perceptual estimates are accurate. (E) Intercept of the linear fit for the
same quantities as in D. Conventions are the same as in D. (F) Coefficient of determination (R2) of the linear fit for the perceived
number of hidden stars (objective and subjective). Error bars represent 95% confidence intervals. The black diagonal represents
values with equal effects for objective and subjective expectations.

with stars and clouds appeared in each trial, and
observers had to perform three direct estimation tasks:
First, observers had to estimate the number of visible
stars. Second, observers had to report the proportion of
the sky that was covered by the clouds. Third, observers
had to estimate the number of hidden stars.

The perceived number of visible stars and the
proportion of occlusion were fitted with a linear
function (see Figure 6D, E) like in experiments 2
and 3. For the estimation of visible stars, the slope
was not significantly different from 1 (0.92 ± 0.27,
t(27) = −1.640, p = 0.113) and the intercept was not
significantly different from 0 (0.73 ± 1.73, t(27) = 2.224,

p = 0.305). This indicates that observers were able to
estimate the number of visible stars accurately. For the
estimation of the proportion of occlusion, the slope
was 0.61 (±0.27) and significantly smaller than 1 (t(27)
= −7.853, p < 0.001). The intercept was around 0.13
(±0.13) and significantly larger than 0 (t(27) = 5.190,
p < 0.001). This indicates that observers underestimated
the proportion of the sky covered by clouds.

For the numerosity estimation of hidden stars,
we would expect that observers estimate the number
of hidden stars based on the number of visible stars
and the proportion of the sky covered by clouds
(Equation 4). We fitted a linear function to quantify the
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relationship between the estimates and the objectively
expected number of hidden stars. Accurate estimates
would be represented by a slope of one and an intercept
of zero. The slope was 0.13 (±0.12) and significantly
smaller than 1 (t(27) = −39.954, p < 0.001). The
intercept was 2.55 (±2.12) and significantly larger
than 0 (t(27) = 6.347, p < 0.001). This indicates that
observers underestimated the number of hidden stars
relative to the objectively expected number according
to Equation 4.

Given that the observers underestimated the
occluded area in the second estimation task, it might be
that the underestimation of the number of hidden stars
was merely a consequence of the underestimation of
occlusion. To test this hypothesis, we further analyzed
the estimated number of hidden stars as a linear
function of the subjectively expected number of hidden
stars, using the trial-by-trial estimations of the number
of visible stars and the proportion of occlusion. This
significantly increased (t(27) = −3.44, p = 0.002)
the explained variance from 0.15 (±0.13) with the
objective prediction to 0.27 (±0.25) with the subjective
prediction (see Figure 6F). However, the slope was with
0.21 (±0.23) still significantly smaller than 1 (t(27) =
−18.572, p < 0.001), and the intercept was with 2.37
(±2.06) still significantly larger than 0 (t(27) = 6.080,
p < 0.001). This indicates that observers still heavily
underestimated the number of hidden stars even when
taking into account their individual misestimations
of the number of visible stars and the proportion of
occlusion (Appendix).

Discussion

In five experiments, we showed that human observers
do not accurately estimate the number of hidden objects.
The results from a numerosity discrimination task in
experiment 1 showed that observers underestimated
the number of hidden objects but were overconfident
in the presence of occlusion. The underestimation
was not caused by observers having overlooked
the occlusion, because trial-by-trial questions and
post-experiment questionnaires showed that most of
them were aware of the occlusion. The results from
the direct estimation tasks in experiments 2 and 3
showed that observers were able to accurately estimate
the number of visible objects and the proportion of
occlusion. Hence, all the necessary information to
accurately estimate the number of hidden objects was
available to them, but that did not result in accurate
estimates according to Equation 4. Experiment 4
showed that observers were not simply ignoring the
visible objects because their arrangement modulated
the estimation of hidden objects. Regular arrangements
across occlusion led to larger and regular arrangements

outside of the occlusion led to smaller numbers of
hidden objects compared to irregular arrangements.
Experiment 5 showed that even in a more naturalistic
scene with uniformly distributed objects, observers still
underestimated the number of hidden objects.

A remaining question of course is why observers’
estimations were inaccurate. On a behavioral level,
one could argue that humans simply do not assume a
constant density of objects in the world. Without that
assumption, it would be nonsensical to try to estimate
the number of hidden objects based on the number of
visible objects. However, it is not obvious why our visual
system should not subscribe to this assumption. In most
cases, the visible part of the environment should be
the best guess for its non-visible parts. In addition, at a
lower level, for simple contours and surfaces, the visual
system follows the assumption that nothing special
happens behind occluders and that information from
the surround can be filled-in (de Weerd, 2006; Komatsu,
2006). Why does it not follow the same assumption and
rules for more complex and irregular arrangements of
objects? First, it simply might be an issue of complexity,
so that information is not completed at all processing
levels, but only for simple low-level features, such as
orientation or color. Second, it might be an issue of
receptive field size. (Neural) Models of perceptual
completion typically assume that neurons with receptive
fields at the gap receive lateral input from neurons with
receptive fields outside of the gap (Komatsu, 2006)
to complete the missing information in the gap. It
is known that receptive field size increases along the
visual hierarchy (Smith, Singh, Williams, & Greenlee,
2001). Completion might fail, if receptive fields are
larger than the gaps in information. With respect to
these first two points, there is contradictory evidence
about the question whether numerosity is a low- or
a high-level feature. Some studies found numerosity
representations primarily at late processing stages in
prefrontal and parietal cortex (Nieder, Freedman,
& Miller, 2002; Roitman, Brannon, & Platt, 2007),
whereas others found numerosity-related activity
already in early visual cortex (DeWind, Park, Woldorff,
& Brannon, 2019; Fornaciai, Brannon, Woldorff, &
Park, 2017). Third, although we showed that observers
have all the necessary quantities to estimate the number
of hidden objects, combining them like in Equation 4
might be difficult. In particular, calculating the density
of the visible objects might not be something that is
done intuitively. Because numerosity and density are
necessarily intertwined visual features, there has been an
intensive debate about whether numerosity is a primary
visual attribute and under which circumstances humans
use numerosity or texture density as quantitative visual
cues (Burr & Ross, 2008; Dakin, Tibber, Greenwood,
Kingdom, & Morgan, 2011; Durgin, 2008). Our results
clearly show that observers did not use density to
solve the task, because using the density of objects
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in the visible parts of the stimulus would have
automatically resulted in accurate choices in experiment
1. Furthermore, the estimation of hidden objects was
independent of the size of the occluder and therefore
also independent of the density of visible objects, which
covary. Hence, our results are consistent with other
findings that numerosity can be considered a primary
visual attribute (Cicchini, Anobile, & Burr, 2016) and
that it takes precedence over density in our paradigm
even when it is not useful for the task. Fourth and
finally, it might be an issue of uncertainty. The Bayesian
model indicates that the uncertainty about the number
of hidden objects might be so large that estimates are
completely dominated by the prior (either about the
number of all or of hidden objects).

Smaller inaccuracies in the estimation of numerosity
of visible objects have been reported in various
paradigms: numerosity is underestimated in front-
planes compared to back-planes at low densities
(Schütz, 2012), in back-planes compared to front-
planes at high densities (Scaccia & Langer, 2019), in the
periphery compared to the fovea (Balas, 2016; Valsecchi,
Toscani, & Gegenfurtner, 2013; but see Hübner &
Schütz, 2017) in high-contrast elements compared to
low-contrast elements (Lei & Reeves, 2018) and during
saccadic eye movements (Binda, Morrone, Ross, &
Burr, 2011). The underestimation of numerosity in
back-planes at high densities was interpreted as an
effect of occlusion from the front-plane (Scaccia &
Langer, 2019).

Our results relate to a perceptual illusion, called
“illusion of empty space,” where a partially occluded
scene is perceived to be empty behind the occluder
(Ekroll, 2019; Ekroll, Sayim, van der Hallen, &
Wagemans, 2016; Luna et al., 2021; Michotte, Thinès,
& Crabbé, 1964; Øhrn et al., 2019). Previous studies
showed that the illusion of absence is not just due to
the lack of retinal stimulation, but rather a result of
perceptual completion (Ekroll, 2019). The illusion can
lead for instance to perceive an object to magically
float in space, because the possibility that the object is
actually resting on another, completely hidden object
is neglected. However, our results go beyond the
illusion of absence, because in our case there is sensory
information about the presence of objects, which,
however, does not seem to be used to accurately estimate
the number of hidden objects. This is also reminiscent
of the development of object permanence, where
very young infants fail to represent the presence of
objects that disappear from their view behind occluders
(Munakata, McClelland, Johnson, & Siegler, 1997). In
our case, adults seem to fail to represent the presence of
irregularly arranged objects behind occluders.

Last but not least, our findings are also relevant for
the field of metacognition (Mamassian, 2016). The
results in the confidence task in experiment 1 showed
that observers were similar confident to discriminate

numerosity when comparing two fully visible scenes,
two partially occluded or one partially occluded
and one visible scene. Given that they objectively
lacked information for partially occluded scenes,
this can be considered as an error of metacognitive
confidence, where observers were overconfident in
their inferences about the occluded area. This might
be linked to two other phenomena of metacognitive
distortions. The first one is about natural scotomata
where no sensory information is processed, such as
the blind-spot and the foveal rod scotoma. Both
gaps are perceptually completed (Ehinger, Häusser,
Ossandón, & König, 2017; Gloriani & Schütz, 2019;
Ramachandran, 1992) and humans are overconfident
for the inferred information compared to sensory
information at other locations (Ehinger et al., 2017;
Gloriani & Schütz, 2019). The second one is about the
limitations of peripheral vision, which is characterized
by lower resolution and larger spatial distortions
and uncertainty than foveal vision (for reviews see
Rosenholtz, 2016; Stewart, Valsecchi, & Schütz, 2020;
Strasburger, Rentschler, & Jüttner, 2011). Strikingly,
the fidelity of peripheral vision is overestimated and
that misestimation has been interpreted as subjective
inflation (Knotts, Odegaard, Lau, & Rosenthal, 2019;
Odegaard, Chang, Lau, & Cheung, 2018; Solovey,
Graney, & Lau, 2015), where observers believe to
perceive more than they actually can see rather than
perceptual filling-in, where missing information is
(accurately) completed. In this light, our results could
be interpreted as a phenomenon of inflation rather
than perceptual completion because our observers were
confident about their inaccurate estimations of the
number of hidden objects. This is consistent with the
recent finding that metacognitive confidence relates to
the consistency rather than the accuracy of responses
(Caziot & Mamassian, 2021).

Keywords: numerosity, perceptual completion,
occlusion, confidence
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Appendix

Underestimation of the number of hidden
pieces as a function of perceived number of
visible pieces in experiments 1 and 2

Because the observers had no access to the actual
number of visible pieces, they could only use the
perceived number of visible pieces to estimate the
number of hidden pieces. An underestimation of the
number of visible pieces should therefore also lead to
an underestimation of the number of hidden pieces.
Here, we analyzed if the underestimation of visible
pieces could fully account for the underestimation of
hidden pieces.

Given the estimation of visible number in experiment
2, the perceived number of the visible standard in
experiment 1 would be nine (= 0.8 × 10 + 1), leading
to an expected PSE of −2.4 for the mixed-condition
according to Equation 1. This was quite close to
the expected PSE of −2.7, obtained with the actual
number of visible pieces. Indeed, the empirical PSE in
experiment 1 was still significantly smaller than −2.4
(t(43) = 5.93, p < 0.001).

In experiment 2, the average perceived number of
visible pieces was 5.8, 6.6, 7.4, 8.2, 9.0, 9.8, 10.6, 11.4,
and 12.2. Using these values to calculate the expected
number of hidden pieces according to Equation 1, the
expected slope would be 0.22 and 0.84 for the small
and large occluder, respectively. Again, these values

were quite close to the expected slope of 0.27 and
1.05, obtained with the actual number of visible pieces.
The empirical data in experiment 2 was significantly
smaller than 0.22 in the small-occluder (t(29) = −5.36,
p < 0.001) and smaller than 0.84 in the large occluder
condition (t(29) = −24.43, p < 0.001).

This additional analysis clearly shows that the small
underestimation of the number of visible pieces cannot
account for the larger underestimation of the number
of hidden pieces.

Precision of responses

In experiment 1, the just-noticeable difference (JND)
as the standard deviation of the Gaussian functions
(Equations 2 and 3) can be taken as estimate for the
precision in the perceptual discrimination and the
confidence judgments. In the selection task, the JND
was not significantly different (F(2,84) = 1.64, p =
0.201) in the non-occluded (1.44 ± 0.62), occluded
(1.60 ± 0.55) and mixed condition (1.71 ± 0.88). In the
confidence task, the JND was significantly different
(F(2,84) = 3.56, p = 0.033) in the non-occluded (2.78
± 1.66), occluded (3.62 ± 2.17), and mixed condition
(3.43 ± 1.80). Hence, the precision was not affected
by occlusion in the perceptual discrimination task, but
in the confidence task. This indicates that observers
were less certain about their confidence choices under
conditions of occlusion.

In the direct estimation tasks of experiments 2 to
5, we analyzed the coefficient of variation (CV) as
measure of precision. The CV normalizes the standard
deviation of the responses by their mean. It is a matter
of debate if the CV and the Weber fraction are constant
for different stimulus numerosities and therefore obey
Weber’s law (Anobile, Cicchini, & Burr, 2014; Testolin
& McClelland, 2021). However, for the small stimulus
numerosities used in our experiment, the CV is typically
rather constant between 0.1 and 0.3 (Anobile et al.,
2014; Anobile, Castaldi, Moscoso, Burr, & Arrighi,
2020; Pomè, Anobile, Cicchini, & Burr, 2019; Testolin
& McClelland, 2021).

In experiment 2 (Figure A1A), the CVs of the number
estimation of the visible pieces were not different from
each other (F(2,56) = 2.79, p = 0.070), but in the
typical range of Weber fractions of about 0.1 (Anobile
et al., 2020; Pomè et al., 2019; non-occluded: 0.09 ±
0.04; smaller occluder: 0.10 ± 0.04; large-occluder:
0.10 ± 0.04). The CVs of the number estimation
of hidden pieces (F(2,56) = 19.30, p < 0.001) were
significantly different from each other, but also close to
0.1 in the non-occluded (0.05 ± 0.07), small-occluder
(0.12 ± 0.08), and large-occluder (0.13 ± 0.09)
conditions.

In experiment 3 (Figure A1B), the CV in the occluded
condition was at the upper end of the typical range
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Figure A1. Precision of responses. A) JNDs in the selection and confidence task of Experiment 2. Light colors represent individual
observers; saturated colors the mean across observers. Error bars represent 95% confidence intervals. B) Coefficient of variation of
the estimation of the number of visible and hidden pieces in Experiment 2. Light colors represent individual observers; saturated
colors the mean across observers. Error bars represent 95% confidence intervals. C) Coefficient of variation in the estimation of
hidden pieces in the regular-outside and the regular-across conditions of Experiment 4. Light gray represent individual observers;
black the mean across observers. Error bars represent 95% confidence intervals. D) Coefficient of variation in the estimation of the
number of visible stars and the proportion that the sky was covered. Conventions are the same as in C.

(0.25 ± 0.07), whereas the CV in the non-occluded
condition was close to zero (0.02 ± 0.04).

In experiment 4, CVs in the estimation of hidden
pieces were not significantly different (F(2,56) =
0.86, p = 0.429) and again in the typical range in
the irregular (0.16 ± 0.12), regular-across (0.15 ±
0.13), and regular-outside (0.17 ± 0.18) conditions
(Figure A1C).

It can be seen that although observers in experiments
2, 3, and 4 were inaccurate in the estimation of the
number of hidden pieces, they were rather consistent in
their estimations.

In experiment 5, CVs in the estimation of the number
of visible stars and the proportion of occlusion were
significantly different (t(27) = −6.94, p < 0.001). The
estimation of the number of visible stars was in the
typical range (0.15 ± 0.05). The estimation of the
hidden proportion was higher (0.27 ± 0.09) but very
similar to the CV of the same task in experiment
3. This shows that the observers were consistent
in their estimations of the number of visible stars
and the proportion of occlusion in the naturalistic
scene.
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