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Viewpoint effects on object recognition interact with
object-scene consistency effects. While recognition of
objects seen from “noncanonical” viewpoints (e.g., a
cup from below) is typically impeded compared to
processing of objects seen from canonical viewpoints
(e.g., the string-side of a guitar), this effect is reduced by
meaningful scene context information. In the present
study we investigated if these findings established by
using photographic images, generalize to strongly
noncanonical orientations of three-dimensional (3D)
models of objects. Using 3D models allowed us to probe
a broad range of viewpoints and empirically establish
viewpoints with very strong noncanonical and canonical
orientations. In Experiment 1, we presented 3D models
of objects from six different viewpoints (0°, 60°, 120°,
180° 240°, 300°) in color (1a) and grayscaled (1b) in a
sequential matching task. Viewpoint had a significant
effect on accuracy and response times. Based on the
viewpoint effect in Experiments 1a and 1b, we could
empirically determine the most canonical and
noncanonical viewpoints from our set of viewpoints to
use in Experiment 2. In Experiment 2, participants again
performed a sequential matching task, however now the
objects were paired with scene backgrounds which
could be either consistent (e.g., a cup in the kitchen) or
inconsistent (e.g., a guitar in the bathroom) to the
object. Viewpoint interacted significantly with scene
consistency in that object recognition was less affected
by viewpoint when consistent scene information was
provided, compared to inconsistent information. Our
results show that scene context supports object
recognition even when using extremely noncanonical
orientations of depth rotated 3D objects. This supports
the important role object-scene processing plays for

object constancy especially under conditions of high
uncertainty.

Introduction

Object recognition happens fast, automatically,
and in most cases seems effortless to us. Because
our environment is highly dynamic, especially when
interacting with it, one and the same object will produce
a range of different images on the retina. In fact, it is
very unlikely that an object would produce the same
retinal image twice owing to changes in viewpoint,
lighting, reflections, or viewing distance. Still, our visual
system is able to flexibly transform this variable visual
input in a way that object identity can successfully be
read out from the resulting abstract representations in
higher areas of visual cortex (see DiCarlo & Cox, 2007).

Whether object recognition is viewpoint dependent
(recognition performance is sensitive to changes in
viewpoints as indicated by accuracy and response
time [RT] data) or viewpoint invariant (recognition
performance is largely unaffected by changes in
viewpoint) has been a debated topic (Biederman
& Gerhardstein, 1993; Bülthoff & Edelman, 1992;
Burgund &Marsolek, 2000; Leek, Atherton, & Thierry,
2007; Edelman, 1995; Graf, 2006; Hayward, 2003;
Hayward & Tarr, 1997; Jolicoeur, 1990; Leek et al.,
2007; Lowe, 1987; Marr, Nishihara, & Brenner, 1978;
Ratan Murty & Arun, 2015; Stankiewicz, 2002; Tarr
& Bülthoff, 1995; Tarr & Pinker, 1989; Wilson &
Farah, 2003). Since the early debates, there has been
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overwhelming consensus that object recognition is
neither solely viewpoint dependent nor solely viewpoint
invariant and that evidence for both can be observed
depending on experimental task and stimuli (Foster &
Gilson, 2002; Hamm & McMullen, 1998; Jolicoeur,
1990; Leek et al., 2007; Ratan Murty & Arun, 2015;
Sastyin, Niimi, & Yokosawa, 2015; Stankiewicz, 2002;
Vanrie, Béatse, Wagemans, Sunaert, & Van Hecke,
2002).

Past research has made great advances toward
understanding the mechanisms that underly invariant
object recognition, when objects are presented in
isolation (i.e., DiCarlo & Cox, 2007). More recently,
however, researchers have started to investigate the
viewpoint problem in the context of object–scene
processing. Object recognition rarely occurs in isolation
where the only available information are the objects’
features. In our everyday lives, we encounter objects
within certain contexts, which provides us with a
pool of complex visual and multimodal information
that is integrated during object recognition. Past
research has shown that context facilitates object
recognition (Biederman, Mezzanotte, & Rabinowitz,
1982; Oliva & Torralba, 2007; for a recent review
see Lauer et al., 2021). Evidence from behavioral as
well as neurophysiological studies (e.g., Brandman
& Peelen, 2017) suggest an interactive processing
of objects and scenes. For instance, objects placed
in semantically consistent contexts are recognized
faster and more accurately, often referred to as
the scene–consistency effect (Davenport & Potter,
2004; Palmer, 1975). Accordingly, models of object
recognition have been updated to incorporate the
integration of contextual information (Bar, 2004).
Further, frameworks incorporating object-scene
and object-object relations (e.g., the so-called scene
grammar) describe a set of internalized rules based on
regularities found in real-world scenes that facilitate
scene and object perception and guide our attention
during different visual cognitive tasks (Draschkow &
Võ, 2017; Josephs, Draschkow, & Võ, 2016; Võ, 2021;
Võ, Boettcher, & Draschkow, 2019; Võ & Henderson,
2009; Võ & Wolfe, 2013a; Võ & Wolfe, 2013b).

Recent work has also looked at influences of object
and scene orientation on the scene consistency effect
(Lauer, Schmidt, & Võ, 2020; Sastyin et al., 2015).
Sastyin et al. (2015) conducted a series of experiments
investigating the interaction between viewpoint and
scene consistency on object and scene recognition. They
used photographic images of objects from canonical
and noncanonical viewpoints and paired them with
consistent and inconsistent scenes. They evaluated
viewpoints in a relative manner with canonical
viewpoints containing more canonical characteristics
than noncanonical viewpoints as determined by rating
the stimuli. Others have defined canonical viewpoints
as the viewpoint from which one would photograph

an object or the viewpoint from which one sees the
object when imagining it, mostly finding off-axis views
to be preferred (Blanz, Tarr, & Bülthoff, 1999; Cutzu &
Edelman, 1994; Palmer, Rosch, & Chase, 1981). It has
been shown that using these criteria leads to relatively
consistent results between participants. Sastyin et al.
(2015) found a significant interaction between viewpoint
and consistency, where the viewpoint effect was weaker
when consistent scene information was provided. The
authors concluded that object recognition relied more
on context information if the object was presented from
a noncanonical viewpoint.

These results are an impressive example of how
contextual scene information can support object
recognition. Here, we investigated if the contextual
modulation of viewpoint effects generalizes to strongly
noncanonical object orientations. That is, investigate
object–scene processing under conditions that produce
high uncertainty. This is an important test of the
visual system’s ability to flexibly rely more on recurrent
top–down modulation from scene context when
objects are difficult to recognize. In our study, we
used three-dimensional (3D) models of objects to
create our stimulus set. The use of 3D models to test
conditions of object constancy has led to valuable
insights such as uncovering the stages of shape-
and size-invariant object recognition in the visual
system (Isik, Meyers, Leibo, & Poggio, 2014), as
well as investigating the features and computational
transformations that support 3D object recognition
(Biederman & Gerhardstein, 1993; Gauthier et al.,
2002; Isik et al., 2014; Logothetis, Pauls, Bülthoff, &
Poggio, 1994; Poggio & Edelman, 1990; Ratan Murty
& Arun, 2018; Zisserman et al., 1995). In our case, the
use of 3D models is motivated by the ability to create
a set of highly noncanonical viewpoints in a controlled
manner while retaining naturalistic properties, such as
the 3D structure of the objects from each viewpoint.
Recent work using 3D immersive environments has
highlighted the importance of studying vision under
more naturalistic constraints in order to investigate
cognitive processes in the context of natural behavior
(Draschkow, Kallmayer, & Nobre, 2021; Helbing,
Draschkow, & Võ, 2020; Helbing, Draschkow, & Võ,
2022; Kristjánsson & Draschkow, 2021).

In the present study, we conducted three
behavioral experiments. In our first two experiments
(Experiments 1a and 1b), we presented 3D models
of real-world objects from six different angles (0°,
60°, 180°, 120°, 240°, and 300°) rotated around
the pitch axis in a word–picture verification task.
Because rotating the objects around the pitch
axis results in highly atypical viewpoints, we
expected to find viewpoint-dependent recognition
indicated by lower accuracy and slower RTs. In
Experiment 1b, we wanted to replicate Experiment 1a
with grayscale versions of the images, expecting
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similar effects of viewpoint as for Experiment 1a
(Hayward & Williams, 2000). Experiments 1a and
1b also served to identify viewpoints that produced
highest (canonical) and lowest (noncanonical)
recognition performance, which we then used in
Experiment 2.

In Experiment 2, we paired 3D objects presented
in canonical (0° rotation) and noncanonical (120°
rotation) viewpoints with semantically consistent and
inconsistent scenes. Our aim was to test if viewpoint
dependence and object–scene processing effects (Sastyin
et al., 2015) generalize to depth rotated 3D models of
objects.

General methods

Participants

Participants were recruited at Goethe-University
Frankfurt am Main. The sample consisted of 12
participants who completed Experiment 1a (6 women,
M age = 23.92 years, range = 19–29 years), 12 different
participants who completed Experiment 1b (8 women,
M age = 19 years, range = 18–22 years), and another
set of 32 participants who completed Experiment 2
(25 women, M age = 24.28 years, range = 18–51
years). The sample size of Experiment 2 was a priori
chosen to be higher compared to previous studies
which found reliable effects across multiple experiments
with 20 participants (e.g., Sastyin et al., 2015). In
Experiment 1a, all except for six participants were
psychology students who were compensated with course
credits; the remaining participants volunteered for the
experiment without any compensation. All had normal
or corrected-to-normal vision, were native German
speakers, and were unfamiliar with the stimulus
materials. Written informed consent was obtained
before participation, data collection and analyses were
carried out according to guidelines approved by the
Human Research Ethics Committee of the Goethe
University Frankfurt.

Stimulus material

For Experiments 1a and 1b, we collected 100 3D
models of objects from a broad range of categories
such as furniture, foods, vehicles, plants, and electrical
devices. Eighty-two of the 3D models were purchased
from CG Axis Complete packages I, II, III, and V, and
18 additional models were obtained free of charge from
sources like TurboSquid and free3D. Each model was
rotated around its pitch axis by 0°, 60°, 120°, 180°,
240°, and 300° degrees and sized to fit a 60 cm × 60
cm × 60 cm box using the free 3D animation software

Blender. Importantly, we chose the most frontal view
for the 0° label. Not necessarily because it was the most
canonical out of all possible views (usually off-axis
views are perceived as more canonical; e.g., Palmer et
al., 1981), but because it did not include any additional
in-plane rotations or rotations around other cardinal
axes. Crucially, it still allowed us to determine the most
canonical and noncanonical views out of the chosen set
of views. A snapshot from each angle was systematically
recorded in front of a gray background using the
virtual reality software Vizward5 to create our final
stimulus set of 600 images. Additionally, we created
grey-scaled versions of these images for Experiment 1b
using the GrayscaleEffect function in Vizard5
(https://docs.worldviz.com/vizard/latest/postprocess_
color.htm).

For Experiment 2, we used the same 3D models
as in Experiment 1, adding an additional 56 models
collected from the CGAxis packages, resulting in a total
of 156 models. Instead of creating snapshots of all six
angles, we chose the two viewpoints that had previously
produced the highest (canonical viewpoint; 0°) and
lowest (noncanonical viewpoint; 120°) recognition
performance averaged over Experiments 1a and 1b. We
gray-scaled the images using the previously described
method.

Additionally, we collected 312 photographic images
of scenes, one consistent and one inconsistent scene for
each object. We defined a consistent scene as one in
which we would expect the object to appear naturally.
In both cases, the target object was not present in the
scene. Most of the photographs were obtained from
the SCEGRAM database (Öhlschläger & Võ, 2017), as
well as from Google images. In Experiment 2, objects
were presented as templates superimposed on scenes.
This was done in line with previous work investigating
the influence of object and scene orientation on
scene-consistency effects (Lauer et al., 2020; Lauer &
Võ, 2022).

All stimuli are available at https://github.com/
aylinsgl/2022-Viewpoint_and_Context.

Procedure

To investigate the speed and accuracy of object
recognition, while keeping the procedure comparable
with previous studies, a word-picture verification task
was used for all experiments (Figure 1). Participants
were instructed on screen as well as through
standardized verbal instructions to decide as quickly
and accurately as possible whether the object on screen
matched the basic level category label presented to
them at the beginning of the trial using a corresponding
match or mismatch key. Participants were not made
aware of the different viewpoint conditions beforehand.
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Figure 1. Exemplary overview of a subselection of stimuli used in Experiment 1a and the viewpoints used when presenting them
(A). Trial procedures for the matching task in Experiments 1a and 1b (B) and Experiment 2 (C). The object was presented in color in
Experiment 1a and grayscaled in Experiment 1b. Note that the depicted labels are in English for visualization purposes (German in the
original experiment). Participants had to press the “c” key on their keyboard to indicate a match between label and image, and the
“m” key to indicate a mismatch.

Each experiment consisted of three practice trials
during which the instructor stayed in the room with
the participant. More detailed procedure and trial
sequences are described in the individual Procedure
sections of each experiment. Experiments 1a and 1b
lasted approximately 30 minutes, and Experiment 2
lasted approximately 12 minutes.

Design

Experiments 1a and 1b consisted of six blocks
with 100 trials each. In each block, the object was
presented from a different angle (0°, 60°, 120°, 180°,
240°, or 300°) chosen randomly and counterbalanced
between participants. The order of objects within
each block was randomized. Each object appeared
three times in the match condition (object image

matched basic level category label) and three times
in the mismatch condition (object image did not
match basic level category label), randomized between
blocks.

In the mismatch condition, the basic level category
label stemmed from a different superordinate category
than the object image (e.g., the label “chair” as part
of the superordinate category “furniture” was paired
with an image of a “car” as part of the superordinate
category “vehicle”).

Because there was no effect of viewpoint in
the mismatch condition in Experiments 1a and
1b, most trials in Experiment 2 were match
trials (n = 120), with 23% mismatch trials (n
= 36) that were later excluded from analysis.
In Experiment 2, each object was presented to
each participant once, and we counterbalanced
consistency (consistent vs. inconsistent) and
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viewpoint (canonical vs. noncanonical) between
participants.

Data analysis

In Experiments 1a and 1b, we were interested
in the effects of viewpoint (how far the object
was rotated away from its canonical 0° angle) and
match (whether the object matched the basic level
category label as part of the experimental design)
on reaction times (time between the onset of the
object image and keypress response) and accuracy. In
Experiment 2, we were interested in the interaction
between viewpoint (canonical vs. noncanonical
viewpoint), and scene consistency (consistent scene
versus inconsistent scene) on reaction times and
accuracy.

Raw data were preprocessed and analysed using R
(R Core Team, 2021). Objects that produced accuracy
ratings that deviated more than 2.5 standard deviations
(SD) from the mean (computed for each condition
separately) were excluded from analysis. Based on this
criterion, we excluded four objects in Experiment 1a,
one in Experiment 1b, and two in Experiment 2. We
based our reaction time analysis on correctly matched
trials only (percent trials removed: Experiment 1a =
4.45%, Experiment 1b = 10.16%, Experiment 2 =
8.55%).

In our data analysis, we used (generalized) linear
mixed-effects models ((G)LMMs) using the lme4
package (Bates, Mächler, Bolker, & Walker, 2015).
We chose this approach because of its potential
advantages over analysis of variance, because it allows
us to simultaneously estimate by-participant and
by-stimulus variance (Baayen, Davidson, & Bates,
2008; Bates, Mächler, Bolker, & Walker, 2014; Kliegl,
Wei, Dambacher, Yan, & Zhou, 2011). The random
effects structure of each model was determined using
a drop-one procedure starting with the full model
including by-participant and by-stimulus varying
intercepts and slopes for the main effects in our design.
We then subsequently removed random slopes that
did not contribute significantly to the goodness of fit
as determined by likelihood ratio tests. This strategy
allowed us to avoid overparameterization and produce
converging models that are supported by the data.
Details about the individual analysis and models
are described in the Data analyses sections of each
experiment. For each GLMM, we report β regression
coefficients together with the z statistic and apply a
two-tailed 5% error criterion for significance testing.
The p values for the binary accuracy variable are based
on asymptotic Wald tests. Additionally, reaction times
were transformed following the Box–Cox procedure
(Box & Cox, 1964) to correct for deviation from
normality as to better meet LMM assumptions (see

individual Data analysis sections for further details). For
the LMMs, regression coefficients are reported with the
t-statistic and p values were calculated with the lmerTest
package (Kuznetsova, Brockhoff, & Christensen,
2017). We defined sum contrasts for match (match vs.
mismatch), and consistency (consistent vs. inconsistent)
where slope coefficients represent differences between
factor levels and the intercept is equal to the grand
mean.

We used the ggplot2 package (Wickham,
2016) for graphics and emmeans (Lenth, 2023)
for post hoc comparisons. Data and code are
openly available at https://github.com/aylinsgl/
2022-Viewpoint_and_Context.

Apparatus

All experimental sessions were carried out in the
same six experimental cabins of the department
of psychology at Goethe-University Frankfurt am
Main, containing the same experimental set up
(computers running OS Windows 10). Stimulus
presentation, RTs and accuracy were systematically
controlled and recorded by OpenSesame (Mathôt,
Schreij, & Theeuwes, 2012), presented on a 19-in
monitor (resolution = 1,680 × 1,050, refresh rate
= 60 Hz, viewing distance = approximately 65
cm, subtending approximately 11.13° × 9.28° of
visual angle for the object images and approximately
19.0° × 15.84° of visual angle for the background
images).

Experiments 1a and 1b

In Experiments 1a and 1b, we investigated the effect
of viewpoint on object recognition RT and accuracy
using 3Dmodels of objects rotated around the pitch axis
(0°, 60°, 120°, 180°, 240°, and 300°). The only difference
between the experiments was that 3D models were
presented either in color (Experiment 1a) or a grayscale
version of the model was used (Experiment 1b).
Participants had to indicate whether the object matched
the previously presented basic level category label.

Procedure

Participants were presented with a fixation point
in the middle of the screen followed by a basic level
object category label (in German, font. Droid Sans
Mono; font size. 26; color. black). This presentation
was followed by the target object presented in the
middle of the screen, which could either match
or mismatch the label, until the participant gave
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Figure 2. Partial effect plots of the interactions of viewpoint (0°, 60°, 120°, 180° 240°, and 300°) and match (match vs. mismatch) on
accuracy for Experiment 1a (colored; A), and Experiment 1b (grayscaled; C), and the effect of viewpoint on RT for Experiment.

a response (Figure 1A). Participants were given
feedback on screen if their answer was incorrect. The
next trial automatically started with a new fixation
point.

Data analysis

After data preprocessing, we used a binomial
GLMM to examine the effects of viewpoint and
match on accuracy. As fixed effects we included
viewpoint (0°, 60°, 120°, 180°, 240°, or 300°) as a
first- and second-degree polynomial, the match versus
mismatch comparison, and the interactions between
these terms. The second-degree polynomial viewpoint
term was added, because we expected viewpoint to
affect recognition in a nonlinear manner (symmetry
around 180°). Our final model included random
intercepts for participants and stimuli, as well as a
by-stimuli random slope for the match versus mismatch
effect for Experiment 1a, and random intercepts for
participants and stimuli, as well as a by-stimuli and
by-participant random slope for the match effect for
Experiment 1b.

Based on the power coefficient output of the Box–
Cox procedure (λ = 0.22), RTs were log transformed.We

used the same fixed effects structure for the RT–LMMs
as for the accuracy–GLMMs. As random effects,
we entered random intercepts for participants and
stimuli, as well as by-participant and by-stimuli random
slopes for the effect of match for Experiments 1a
and 1b.

Results

Accuracy
The average accuracy in Experiment 1a was quite

high (M = 0.95, SD = 0.21) and slightly lower in
Experiment 1b (M = 0.9, SD = 0.3). In line with our
hypothesis, the GLMM yielded a significant main effect
for the second-degree polynomial viewpoint term in
both experiments (Experiment 1a: β = 16.67, SD =
5.61, z = 2.97, p = 0.003; Experiment 1b: β = 18.82,
SE = 3.79, z = 4.97, p < 0.001), meaning that the effect
of viewpoint on accuracy can be well-described by a
quadratic function (Figure 2A and 2C). There was also
a significant interaction between the second-degree
polynomial of viewpoint and the match condition in
both experiments, Experiment 1a: β = 23.62, SE =
5.69, z = 4.15, p < 0.001; Experiment 1b: β = 15.23, SE
= 3.82, z = 3.98, p < 0.001. Comparing the viewpoint
trend for the match and mismatch conditions, we found
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that the second-degree viewpoint trend was significant
in the match condition (Experiment 1a: β = 0.19, SE
= 0.03, 95% CI = [0.13–0.25]; Experiment 1b: β =
0.16, SE = 0.02, 95% CI = [0.12–0.21), but not in the
mismatch condition, Experiment 1a: β = −0.03, SE =
0.04, 95% CI = [−0.12 to 0.05]; Experiment 1b: β =
−0.02, SE = 0.03, 95% CI = [−0.04 to 0.07]. A detailed
overview of performance for each object and viewpoint
is provided in the Appendix (Figure A1).

RTs
Participants were slightly faster on average in

Experiment 1b (M = 685 ms, SD = 358 ms) than
Experiment 1a (M = 738 ms, SD = 299 ms). In line with
our hypothesis, the LMM revealed a significant main
effect for the second-degree polynomial viewpoint term
in both experiments: Experiment 1a: β = −2.2, SE =
0.29, t = −7.48, p < 0.001; Experiment 1b: β = −1.42,
SE = 0.29, t = −4.99, p < 0.001 (Figure 2B and 2D).
In both experiments, there was no interaction between
viewpoint and match, Experiment 1a: β = −0.12, SE =
0.29, t = −0.4, p = 0.69; Experiment 1b: β = −0.38, SE
= 0.29, t = −1.34, p = 0.18.

Discussion

In Experiment 1a, we found viewpoint-dependent
object recognition for objects rotated around the
pitch axis. This effect can best be described by a
quadratic curve that approximates symmetry around
120° rotation. We also found that in our sequential
matching task, only the match condition produced
viewpoint-dependent behavior, whereas mismatch
trials seemed unaffected by viewpoint. Finding a
mismatch might rely more on the analysis of global,
viewpoint-invariant features, whereas matching
might be more dependent on the analysis of local,
viewpoint-dependent features (e.g., Jolicoeur, 1990a)
(e.g., deciding a shape is not a car might require less
viewpoint-dependent information than identifying the
shape as a chair). In Experiment 1b, we were able to
replicate our results from Experiment 1a. Grayscaling
the images seemed to have made the overall task
slightly more difficult, while still producing similarly
viewpoint-dependent behavior. Although some studies
report mirror confusion effects for rotations around
180° (e.g., Gregory & McCloskey, 2010), we did not
encounter this phenomenon in our study. In our case,
rotating around the pitch axis produced views such
as “upside-down, from behind” which is untypical for
images that usually produce mirror confusions. The
canonical (0°) and noncanonical (120°) viewpoints
we used in Experiment 2 represented viewpoints that
produced the best and worst recognition performance
derived from average accuracy ratings obtained from
Experiments 1a and 1b.

Experiment 2

In Experiment 2, we paired canonical (0°) and
noncanonical (120°) viewpoints with consistent and
inconsistent scene contexts. We were specifically
interested in the interaction between viewpoint and
consistency, with the expectation that meaningful
scene context information would decrease the effect of
viewpoint on object recognition.

Procedure

In Experiment 2, we used the same word–picture
verification task as in Experiments 1a and 1b
(Figure 1B). Scene context was provided by first
previewing the consistent or inconsistent scene for
300 ms and then overlaying the target object on top
of the scene background until a response was given.

Data analysis

For both the accuracy–GLMM and RTs LMM,
we entered interaction terms between viewpoint and
consistency as fixed effects. The GLMM included
random intercepts for participants and stimuli, as well
as a by-stimuli random slope for the effect of viewpoint.
RT data were log transformed.

For the RT-LMM, we had random intercepts for
participants and stimuli, and a by-participant random
slope for the effect of viewpoint and by-stimuli random
slopes for the effects of viewpoint and consistency.

Results

Accuracy
Accuracy was significantly higher for canonical

viewpoints than for noncanonical viewpoints as
revealed by the GLMM (β = 0.68, SE = 0.14, z = 4.82,
p < 0.001), but there was no significant main effect for
consistency (β = 0.06, SE = 0.07, z = 0.75, p = 0.45).
Critically, there was a significant interaction between
viewpoint and consistency (β = −0.21, SE = 0.07, z
= −2.84, p = 0.004) (Figure 3A). Post hoc interaction
contrasts revealed that the viewpoint-dependence effect
was significantly stronger in the inconsistent scene
condition compared to the consistent scene condition
(β = −0.84, SE = 0.3, z = −2.84, p = 0.005). This
finding is in line with our hypothesis that providing
meaningful scene context can decrease the effects of
viewpoint on object recognition. Additionally, the
scene–consistency effect was only significant in the
noncanonical condition (β = 0.53, SE = 0.15, z = 3.45,
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Figure 3. Experiment 2 accuracy difference scores per participant (canonical vs. noncanonical) for consistent and inconsistent scene
backgrounds (A). Adjusted response times (B) were obtained with the remef package (Hohenstein & Kliegl, 2023). *p < 0.05.
***p < 0.001.

p < 0.001), but not in the canonical condition (β =
−0.31, SE = 0.25, z = −1.22, p = 0.22).

RTs
The LMM yielded a significant main effect for

viewpoint (β = −0.07, SE = 0.01, t = −7.26, p < 0.001),
where RTs were faster for canonical (M = 558 ms, SD =
255 ms) than for noncanonical viewpoints (M = 645 ms,
SD = 333 ms) (Figure 3B). There was no significant
interaction between viewpoint and consistency (β =
0.004, SE = 0.005, t = 0.83, p = 0.41).

Discussion

In general, object recognition accuracy was
viewpoint dependent; however, there was a significant
interaction between viewpoint and consistency. In
line with our hypothesis, the viewpoint effect was
significantly weaker for consistent scenes and the scene
consistency effect was only observed for noncanonical
viewpoints (Figure 3A). Noncanonical viewpoints
were recognized significantly slower than canonical
viewpoints. However, this result was unaffected by scene
consistency.

General discussion

In the present study, we investigated how scene
context information modulates viewpoint-dependent
object recognition under conditions of high uncertainty
using 3D models of everyday objects. Although
providing meaningful context did not eradicate
the viewpoint effect fully, it significantly decreased

recognition accuracy costs. By extending previous
findings (Sastyin et al., 2015), we provide further
support for a model of object recognition that
incorporates context (e.g., Bar, 2004), while dynamically
adapting to the amount of available information based
not only on visual features of the object (Burgund
& Marsolek, 2000; Hayward & Tarr, 1997; Jolicoeur,
1990), but also context.

It is assumed that, when objects are presented
in context, rapidly accessed low spatial frequency
information is fed back to the occipito-temporal
cortex facilitating high spatial frequency based analysis
during object recognition (Bar, 2004; Kauffmann,
Ramanoël, & Peyrin, 2014; Peyrin, Chauvin, Chokron,
& Marendaz, 2003; Peyrin, Baciu, Segebarth, &
Marendaz, 2004). The highly noncanonical viewpoints
we used in our experiments produce high uncertainty in
the initial set of possible target objects. We show that,
under conditions where low spatial frequency analysis
of the object leads to very ambiguous target candidates,
the visual system relies more on top–down regulation
modulated by recurrent processing of low spatial
frequency information from the scene (Bar, 2004).

It further motivates models of object constancy—the
visual system’s ability to produce representations that
are robust to changes in, for example, viewpoint or
lighting (e.g., DiCarlo & Cox, 2007)—that efficiently
integrate contextual information and can lead to both
viewpoint-dependent and invariant behavior based on
available information and the task at hand.

A key component of the present study was to
generalize previous findings on object–scene processing
effects and viewpoint dependence to depth-rotated
3D objects. We want to highlight the importance of
generalizing findings from traditional two-dimensional
settings to more naturalistic settings and stimuli.
Kristjánsson and Draschkow (2021) have shown very
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illustratively for a variety of phenomena that, given
more naturalistic constraints, a system is able to
circumvent, for example capacity limits by drawing
on the rich visual experience of natural environments.
Although we did not use fully immersive environments,
using 3D models offers a more realistic encounter
of everyday objects and, therefore, a more precise
measure of viewpoint dependence in real-world object
recognition. It should be noted, however, that there is
a trade-off between naturalistic looking stimuli (i.e.,
photographs) and stimuli that more precisely capture
naturalistic properties (i.e., 3D structure of objects from
different viewpoints) in a highly controlled manner,
while not looking as naturalistic. Here, we opted
for providing more naturalistic 3D properties of the
displayed objects.

From the present study, it is unclear what kind of
information contained in the scenes was responsible
for decreasing the viewpoint costs. Rapidly accessed
global information such as the gist of the scene
(Oliva & Torralba, 2007) could be the main factor.
At the same time, more local information such as
the detection and recognition of certain objects in
the scene preview could provide information about
related possible target objects based on internalized
scene–object and object–object regularities (Võ et
al., 2019). Revealing the time course of when what
kind of contextual information is integrated to buffer
viewpoint effects would provide new insights into how
the visual system so effortlessly achieves invariant object
recognition.

Varying what information is presented during the
task (i.e., providing meaningful context vs. showing
objects in isolation) is one way to probe the visual
system’s ability to overcome processing limitations in
viewpoint-dependent object recognition. Alternatively,
one could keep the visual input constant, but vary
the level at which participants have to perform the
matching task (Hamm & McMullen, 1998). If there
are object representations that contain more or less
viewpoint-dependent or invariant information, how
does this factor interact with the integration of
contextual information in the form of scene context?

Finally, we would like to address that, on average,
performance was high in the matching task throughout
all our experiments. These ceiling effects are probably
due to the type of task we chose, which are different
from the tasks usually used to study scene consistency
effects (Davenport & Potter, 2004; Sastyin et al., 2015).
Despite these differences in difficulty, we were able to
demonstrate a significant decrease in viewpoint costs by
providing meaningful scene context.

Past research has made strong advances toward
understanding the computations that underly
invariant object recognition (DiCarlo & Cox, 2007).
Understanding these mechanisms in isolation is key to
understanding object recognition in general. We argue

that understanding how the visual system is able to
make use of richly structured naturalistic environments
to circumvent computational bottlenecks will ultimately
lead to better, more robust models of object recognition
and inspire approaches in fields such as computer vision
(e.g., Bomatter et al., 2021).

To conclude, in the present study we show that scene
context supports object recognition, even when using
extremely noncanonical orientations of depth rotated
3D objects. We highlight the importance of testing
capacity limits of object recognition in more naturalistic
frameworks to build more robust and flexible models
and move toward a better understanding of vision
under naturalistic constraints.

Keywords: object recognition, viewpoint dependence,
scene context effects
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Appendix A

Figure A1. Accuracy for Experiment 1b (A). Each line represents average performance for each viewpoint of each object. Some objects
were highlighted to demonstrate the range of performance differences between viewpoints for different objects (B).
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