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Accommodation is the process of adjusting the eye’s
optical power so as to focus at different distances.
Uncorrected refractive error and/or functional
presbyopia mean that sharp focus may not be
achievable for some distances, so observers experience
sustained defocus. Here, we identify a problem with
current models of accommodative control: They predict
excessive internal responses to stimuli outside
accommodative range, leading to unrealistic adaptation
effects. Specifically, after prolonged exposure to stimuli
outside range, current models predict long latencies in
the accommodative response to stimuli within range, as
well as unrealistic dynamics and amplitudes of
accommodative vergence innervation driven by the
accommodative neural controller. These behaviors are
not observed empirically. To solve this issue, we propose
that the input to blur-driven accommodation is not
retinal defocus, but correctable defocus. Predictive
models of accommodative control already estimate
demand from sensed defocus, using a realistic “virtual
plant” to estimate accommodation. Correctable defocus
can be obtained by restricting this demand to values
physically attainable by the eye. If we further postulate
that correctable defocus is computed using an idealized
virtual plant that retains a young accommodative range,
we can explain why accommodative–convergence
responses are observed for stimuli that are too
near—but not too far—to focus on. We model
cycloplegia as a change in gain, and postulate a form of
neural myopia to explain the additional relaxation of
accommodation often seen with cycloplegia. This model
produces plausible predictions for the accommodative
response and accommodative convergence signal in a
wide range of clinically relevant situations.

Introduction

As we look around the world, we need to adjust
our ocular accommodation to focus on objects at
different distances. To achieve this, the brain controls
contraction in the ciliary muscle and thus the optical
power of the crystalline lens. Although this task is
simple conceptually, it is complicated by issues such
as sensorimotor latencies, the response properties of
the muscle and lens, and the finite range of optical
powers achievable by the lens. Formal models of this
process have several benefits. Practically, they act as
summaries of empirical findings, helping us to predict
accommodative behavior to arbitrary stimuli and thus
enabling professions from optometrists to visual display
engineers to predict when people will experience blur.
Models also represent theories about computations
carried out by the brain, which can in principle be
tested and compared with neurophysiological findings,
and so help us to understand the nervous system.

As illustrated in Figure 1, models of accommodative
control are essentially a negative feedback loop. The
brain wishes to control ocular accommodation so as to
make the retinal image as sharp as possible (which we
shall here assume means minimizing defocus, although
see Labhishetty, Cholewiak, Roorda, & Banks, 2021).
This goal is achieved by sending a neural control signal
down the oculomotor nerve to the ciliary muscle
surrounding the ocular lens, that is the ocular “plant,”
to ensure that the ocular power matches the effective
optical demand of the stimulus. This neural control
signal represents the ocular power requested by the
brain, and thus can be represented in units of diopters
(D). Much previous work suggests that the controller
at the heart of this negative feedback loop, inside the
golden block labelled “accommodative control system”
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Figure 1. Overall model structure, representing accommodation as a negative feedback system. Red text shows where in the model
four common clinical situations are represented. Demand owing to distance (measured in diopters) combines with any external
lenses to produce an effective stimulus demand at the eye. The difference between this and ocular power (i.e., the optical power of
the eye relative to the power needed to focus at infinity) gives the optical defocus. This in turn is sensed by the brain following a
sensory latency allowing time for defocus to be computed. The accommodative control system takes the sensed defocus as input and
outputs a neural control signal for accommodation. We also show the accommodative convergence signal (purple) which goes into
the vergence control system, not considered in detail in this article. The neural control signal for accommodation travels down the
oculomotor nerve and arrives at the ocular plant. We label the signal “neural control signal” when it is computed in the brain, and
“oculomotor nerve signal” when it arrives at the plant after the motor latency. Cycloplegia, for example with atropine or
cyclopentolate, effectively inhibits this signal, as indicated by the triangular gain block. In complete cycloplegia, gain is reduced to zero
and effectively removes all input to the plant (i.e., cuts the signal). In partial cycloplegia, gain is reduced and a large steady-state
defocus error manifests as a reduced amplitude of accommodation and elevated AC/A ratio. The ocular power is the output of the
ocular plant. The internal structure of the blue Ocular Plant block is shown in Figure 2. Possible internal structures for the yellow
Accommodative Control System block are discussed in Figures 4, 5, and 6. Figure 4 shows the structure we are proposing in this article.

in Figure 1, is essentially a leaky integrator. That is, the
neural control signal is a weighted average of recent
retinal defocus, with more recent defocus weighted
more heavily.

We recently published a model of neural control
of accommodation that aimed to bring together
many ideas in the literature and to be reasonably
comprehensive (Read et al., 2022). We also added
features to account for accommodative micro-
fluctuations and for the closed-loop resonance
enhancing responses at 1 to 2 Hz. In particular, we
emphasized the predictive nature of accommodative
control: to avoid instability and ringing, given the
relatively large sensorimotor latencies, the brain needs
to take into account the future effect of the motor signal
already sent to the ciliary muscle when considering how
to respond to the current sensed defocus.

The model of Read et al. (2022) did not consider
common clinical situations such as fogging lenses,
cycloplegia, uncorrected (or imperfectly corrected)
refractive error, and functional presbyopia. The last
two factors in particular are very common in the
general population, so models must make sensible
predictions in these situations to be of practical use.
The red text labels in Figure 1 show where these four
clinical situations are represented in models. None of
them directly affect the model of control, that is, the

gold block labeled accommodative control system.
However, as we explain elsewhere in this article, we find
that our original model of control makes unrealistic
predictions for these clinical situations. This indicates
that, in fact, models of accommodative control have
been incomplete, in a way that did not show up in
the limited tests carried out to date. In this article,
we suggest how to modify our understanding of
accommodative control to obtain a useful model that
gives sensible predictions both in standard situations
and in common clinical situations such as functional
presbyopia.

Representing common clinical situations in
models of accommodation

We first briefly explain how to represent these clinical
situations within models (Figure 1) (see Methods for
a more detailed discussion). In clinical optometry,
“fogging” is the practice of adding plus lenses in front
of the patient’s eye so as to encourage accommodation
to relax to the maximum amount possible (Ramsdale
& Charman, 1988; Reese & Fry, 1941). This step is
particularly important in patients with hyperopia
who, because of their refractive error, will usually be
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Figure 2. Structure of the ocular plant block shown in Figure 1. The basic transfer function is a leaky integrator or first-order low-pass
temporal filter, with a time constant given by the model parameter PlantTimeConstant (abbreviated PTC; Table 1). This is followed by
a saturation block representing the finite accommodative range, set by model parameter AccomRange, abbreviated AR. Inputs in the
range [0, AR] are passed unchanged; inputs less than zero or greater than the AR produce outputs of zero or the AR, respectively.
Functional presbyopia refers to the gradual reduction of the accommodative range as we age. Finally, the model parameter
RefractiveError is added, abbreviated RE. For emmetropes, RE = 0; for myopes, RE > 0; for hyperopes, RE < 0.

accommodating even when viewing distant stimuli.
The plus lenses effectively move the stimulus beyond
the patient’s far point, making it appear blurred or
“fogged”, and any accommodation increases the defocus
further. In models, fogging or other external lenses must
simply be subtracted from the demand implied by the
physical distance to produce an effective optical demand
(Figure 1).

We represent cycloplegia as a gain applied to the
oculomotor nerve signal (van der Hoeve & Flieringa,
1924; Figure 1). With no cycloplegia, the gain is 1;
for complete cycloplegia, the gain is 0. We represent
refractive error as a constant offset added onto
accommodation to produce ocular power (Figure 2).
Under this definition, refractive error is the optical
power of the eye under complete cycloplegia (see
Methods). Finally, we represent the limited range of
accommodation seen in functional presbyopia as a
saturation block on the signal reaching the ocular plant
(Figure 2).

The problem: Integrator wind-up

These are standard representations of these clinical
situations in models of accommodation, and we
believe they are essentially correct. However, it has
not previously been pointed out that under current
leaky–integrator models of accommodative control,
limiting the range of accommodation predicts a
form of adaptation that is not observed. Current
models predict that viewing a stimulus beyond the
accommodative range should cause unrealistically long
latencies in the accommodative responses to subsequent
stimuli within the accommodative range. In control
theory this phenomenon, occurring when an actuator
cannot produce the commanded response, is known

as integrator wind-up (Astrom & Rundqwist, 1989;
Baheti, 1989; Fertik & Ross, 1967).

The predicted latencies stem from the very large
internal signals predicted in response to sustained
defocus. Consider for example the situation where an
uncorrected +2 D myope views a stimulus at infinity.
The correct ocular power would be 0 D, but the myope’s
elongated eyeball means that their ocular power is
+2 D, even when the lens is fully relaxed. Therefore,
they experience a steady optical defocus of −2 D
(where optical defocus is defined as effective demand
minus ocular power). Models of the neural control of
accommodation are based on leaky–integral control,
where the signal sent to the ocular lens is based on
the integrated defocus encountered over the last few
seconds. (In predictive models, the signal is actually
based on the brain’s own estimate of defocus, but we
can neglect this distinction for the moment.) In this
example, the leaky integrator thus asymptotes to a large
negative value, equal to the integrator’s gain multiplied
by the steady-state defocus. The integrator’s gain must
be large, around 8, to keep defocus errors small for
stimuli within the accommodative range (Read et al.,
2022), and so its asymptotic value for stimuli beyond
range is large, −16 D in this example. If the myope
now transfers their gaze to a nearby object at +4 D,
the defocus will change from −2 D to +2 D. However,
the signal sent to the lens will remain negative until
the leaky integrator has fully discharged from its
asymptotic value of −16 D; only then will the lens
begin to constrict as the signal begins to go positive.
The response of accommodation to sinusoidal stimuli
suggests a time-constant for the leaky integrator in
the range of 2.5 seconds (Read et al., 2022). Thus, the
latency before a response can be significant, well beyond
the ∼300 ms corresponding with the sensorimotor
latency. In fact, when we simulate this example
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Figure 3. Reproduced from Figure 1b of Schor (1999), showing a model for the control of vergence and accommodation. To facilitate
comparison with the present models, we have highlighted the accommodative control system in gold and the ocular plant in blue, as
we do in diagrams of the present models. Note that since this model is nonpredictive, the accommodative control system does not
contain a virtual plant. We show this model to highlight how it handles the finite range of accommodation via a saturation block (red),
the addition of refractive error (also red), and the accommodative-convergence AC signal, taken to be the output of the integrator
(purple).

(Figure 7i), we find a delay of more than 2 seconds
before any response begins.

Although we have been unable to find published
measurements of the latency of accommodative
responses in uncorrected myopes, latencies measured
in seconds are clearly unrealistic. They predict, for
example, that a myopic child who has been trying to
read the whiteboard several meters away at the front of
the classroom would encounter a delay of some seconds
before they could focus again on their own writing.
Notice that the model is not simply predicting slower
than usual responses: it is predicting a latency of some
seconds before any response begins. This effect is also
quite distinct from other forms of adaptation, such as
nearwork-induced transient myopia (Hung & Ciuffreda,
2002, Hung & Ciuffreda, 1999). Current models make
similarly unrealistic predictions for hyperopia and for
functional presbyopia: in each case, exposure to a
stimulus closer than the near point is predicted to cause
large delays in the response to subsequent stimuli within
range. Optometrists and people with refractive error
can confirm that this is not their experience. Current
models also predict very long (seconds) latencies after
defocus owing to fogging. When the plus lenses are
removed and the person looks at a nearby object,
current models predict a delay of several seconds before
the patient’s focus begins to return to normal. Again,
this adaptation to fogging is not seen empirically.

Evidently, if accommodative control can indeed
be understood as a form of integrative control,
the brain has developed its own form of an anti–
wind-up mechanism to prevent the finite range of
accommodation resulting in integrator wind-up and
long latencies. Yet this factor is not accounted for in

current models. Their inability to simulate realistic
responses after sustained significant defocus blur is a
serious problem. It means that our best current models
of accommodative control cannot handle everyday
clinical situations correctly, such as uncorrected
refractive error, functional presbyopia, and fogging
lenses.

Although the focus of this article is on
accommodation alone, it is worth noting that this
issue also presents some difficulty for current models
of accommodative convergence. Empirically, when
a normal observer views a stimulus with one eye, a
change in stimulus distance from far to near elicits
not only an accommodative response, but also a
nasalward movement of the occluded eye, so as to
increase the convergence in a way that would help to
null the retinal disparity if viewing were binocular.
This accommodative convergence is taken to reflect a
neural crosslink signal between the accommodative and
vergence control systems.

Many current models, for example, that of
Schor (1999) shown in Figure 3, postulate that the
accommodative–convergence (AC) signal (shown
purple in Figure 3) is simply the output of the leaky
integrator (purple) that controls accommodation.
This strategy works well for stimuli within the
accommodative range. For example, if a functional
presbyope is viewing a distant stimulus with one eye
occluded, and an experimenter inserts a −1 D lens, the
accommodative integrator will increase its output by
nearly 1 D and both accommodation and vergence will
increase accordingly.

However, now suppose the same experiment is
conducted closer than the observer’s near point, say
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with the stimulus at 4 D. Accommodation will be
unable to increase in response to the divergent lens, so
the sustained defocus will charge the accommodative
integrator to very high values. According to current
models, therefore, vergence will thus increase by
around eight times more than it did previously for
the same change in demand. Again, we simulate this
example in detail in Figure 10, but the essential point
is simple enough to be conveyed here. That is, current
models predict a very large increase in the ratio of the
accommodative convergence response/accommodation
(AC/A) stimulus, that is, stimulus AC/A ratio, for stimuli
closer than the near point. There is some qualitative
empirical support for such an effect (Alpern, Kincaid,
& Lubeck, 1959), but not of the predicted magnitude.
Greater increases in stimulus AC/A ratio are, however,
seen with partial and complete cycloplegia. In partial
cycloplegia, the accommodative amplitude gradually
decreases, and the AC/A ratio gradually increases as

the depth of cycloplegia increases (Christoferson &
Ogle, 1956). In complete cycloplegia, the amplitude of
accommodation reaches zero and the AC/A becomes
nearly infinite (Morgan, 1954).

The solution: Control based on correctable
defocus

In this article, we present an anti–wind-up
adjustment to previously published models that
addresses all these problems. Our model can produce
more realistic simulations of accommodation in
the presence of refractive error, fogging lenses, and
functional presbyopia, while keeping the output of
the accommodative integrator more consistent with
the empirical constraints on the AC signal. We also
model the relaxation of accommodation seen with
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Figure 4. Diagram of the full proposed model. The colors used for the distance demand, effective demand, ocular power, sensed
defocus, estimated future attainable demand, estimated future correctable defocus, integrator output, and neural control signal
match the colors used to plot these signals in the results figures. The purple arrow at the top shows where the accommodative
convergence (AC) signal is drawn off and fed into the vergence control system (not modeled in this article). Refractive error enters
after the physical plant in the outer feedback loop and external lenses are subtracted from the physical demand at the input. In
subsequent model figures (Figures 5–7), this external feedback loop is not shown; we show only the golden accommodative control
system block, whose input is the sensed defocus and whose output is the neural control signal.
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pharmacological cycloplegia, where the ciliary muscle
is relaxed more completely than is otherwise possible,
so that the plant assumes the minimum possible optical
power. To capture this effect, we postulate a form of
neural myopia: a lower bound on the neural signal sent
to the ciliary muscle. For ease of reference, our final
proposed model is shown here in Figure 4, and we
briefly explain its key features here (see Methods for a
detailed description).

Our key idea is that the blur-related signal driving
accommodation is not a defocus, but a correctable
defocus (pink arrow in gold box in Figure 4). Current
predictive models already propose that the brain
reconstructs an estimate of stimulus demand from
defocus, using a realistic virtual plant. We now propose
that this estimated demand is clipped to values that
are considered attainable, that is, not beyond the far
point, before an estimate of future accommodation
is subtracted so as to recover correctable defocus. It
is this correctable defocus that is used as the control
signal for accommodation. This process ensures that
the integrator is not wound up by uncorrectable defocus
owing to unattainably distant demands.

We further propose that, in this computation of
attainable demand and correctable defocus, the brain
uses an idealized virtual plant that takes account
of the fact that accommodation cannot be negative
(i.e., the ocular lens cannot be divergent), but does
not take account of the finite accommodative range.
This inaccuracy turns out to be helpful, because it
allows stimuli closer than the near point to produce
accommodative vergence.

In the Methods, we go through all components of the
model and explain how it works in detail. In the Results,
we show simulations side-by-side for the original model
and for our proposed new model, demonstrating both

the problems with the original model and how our new
model fixes them.

Methods

All the models in this article conform to the general
structure shown in Figure 1, reviewed in detail in Read
et al. (2022).

The internal structure of the ocular plant block is
shown in Figure 2. It receives as input the signal to the
ciliary muscle, and gives as output the optical power of
the eye. Note that in Read et al. (2022) the output was
described as “accommodation,” because we were then
not considering refractive error and so ocular power
was equal to accommodation.

The basic transfer function of the plant is a leaky
integrator, equivalently a first-order low-pass filter,
specified by its time constant, the model parameter
PlantTimeConstant (abbreviated PTC in the figures),
which in this model is set to 156 ms (Table 1). The
saturation block before the plant transfer function
imposes the finite range of accommodation. A
saturation block is a nonlinear circuit element which
has lower and upper limits [L, U]. Inputs within this
range are passed through unchanged; for inputs less
than its lower limit L or greater than the upper limit U,
the output is L or U, respectively. In this case, the lower
limit is 0 D and the upper limit is the model parameter
AccomRange, abbreviated AR, also in diopters. This
value represents the finite range of accommodation
that declines with age. Representing this as a saturation
block before the plant transfer function is clearly an
oversimplification. Really, we should start with a more
complex model of the plant, including its different

Parameter
Name in simulink

workspace
Abbreviation
in figures Value

Sensory latency SensoryLatency 0.20 s
Motor latency MotorLatency 0.10 s
Time constant of plant PlantTimeConstant PTC 0.156 s
Gain of integrator FastGain G 8.0
Time constant of integrator FastTimeConstant t 2.5 s
Neural bias (constant value added onto the integrator output) NeuralBias NB 1.4 D
Neural myopia (minimum value of the neural control signal for accommodation) NeuralMyopia NM 0.2 D
Optical refractive error (as measured under cycloplegia) RefractiveError RE 0 D or as stated
Accommodative range AccomRange AR 4 D or as stated
Cycloplegia Cycloplegia CP 0 or as stated

Table 1. Parameter values for the Simulink model supplied with the article and used to obtain the results (except where stated
otherwise). These values are visible in the Simulink Model Workspace, and can be altered there if desired. Notice that the actual rest
focus of the model, that is, the asymptotic ocular power in open-loop mode, is equal to the parameter RestFocus only when
RestFocus > (NeuralMyopia + RefractiveError). When the parameter RestFocus is less than this, the model’s actual rest focus is equal
to (NeuralMyopia + RefractiveError).
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components such as zonular fibers, lens capsule, and
so on (cf, Figure 6 of Read et al., 2022) and correctly
represent the nonlinearities associated with ageing.
However, we chose this as an acceptable starting point.
Schor (1999) adopted a similar approach, but placed
the saturation block after the plant transfer function.
Because the plant gain is 1, the maximum steady-state
accommodation is the AR, regardless of whether the
saturation block is placed before or after the plant
transfer function; however, we have found that placing
it before gives a more realistic approach to this limit.

Finally, we add on RefractiveError, the observer’s
refractive error, also in diopters. Note that, in this
article, we are considering the refractive error of the
eye, rather than the power of the lens used to correct
it. Ocular refractive errors are, therefore, positive for
myopes (a myopic eye has too much optical power for
its length and needs correction with negative lenses)
and negative for hyperopes.

As an example, consider an observer with an AR
of 4 D, typical for someone in their late forties. An
emmetropic observer with this range can focus on
stimuli from 0 D to 4 D (infinity down to 25 cm). A
myope with +2 D of refractive error can focus on
stimuli from 2 D to 6 D (50 cm to 17 cm), whereas a
−2 D hyperope can focus on stimuli from −2 D to
2 D (i.e., can focus unaided on stimuli from infinity
down to 50cm, and can also tolerate plus lenses of up
to +2 D without blur). All model parameters are given
for reference in Table 1.

Simplified model of accommodative control
used in this article

For simplicity, in this article we use a stripped-down
version of the model developed in Read et al. (2022),
removing elements that are irrelevant to the point
at issue. To this end, we remove noise, the clipped
proportional signal, and the slow integrator, as
well as continuing to neglect the pulse component
of the response to step changes. We retain a bias
signal controlling rest focus. (If we retained the slow
integrator, the latencies would potentially be even
longer, since both the slow and the fast integrator would
charge up.)

Figure 5 shows the contents of the accommodative
control system block in Figure 1, as it would be in this
stripped-down version of the original model. This figure
contains a virtual internal model of the accommodative
plant, shaded light blue in the figures, which is used
to generate internal predictions about future ocular
power, demand and defocus. See our earlier article for
an in-depth discussion of this predictive control. In
brief, the input signal to the accommodative control
system is the sensed defocus, assumed to be computed
from retinal information, such as blur and higher order

aberrations, longitudinal chromatic, and aberrations.
However, to avoid control problems such as overshoot
and ringing, the neural control signal is not generated
directly from this sensed current defocus, but from the
brain’s estimate of the likely future defocus, taking
into account the predicted changes in accommodation
based on the control signal already sent to the eye.
These are computed via an efference copy of the neural
control signal, which is fed into a virtual plant model,
outlined in light blue. The output of the virtual plant
is the eye’s predicted future optical power. Figure 5
shows how this factor is delayed and then added onto
the sensed defocus to compute the predicted past
demand. The green block labeled demand extrapolator”
in Figure 5 uses this to estimate the future demand.
(This block was referred to as the demand predictor
in our previous article. We now feel the term demand
extrapolator is more helpful, because it emphasizes
that stimulus demand is not necessarily within the
control of the observer and, thus, cannot in principle
always be predicted perfectly.) In our Simulink models,
the demand extrapolator in fact simply feeds through
its input, that is, it assumes the effective demand
will remain constant for at least a time equal to the
sensorimotor latency. The predicted future power is
then subtracted from this estimated future demand to
result in the estimated future defocus, which is the key
signal used for accommodative control.

The estimated future defocus is fed into the
Integrator block, shaded purple in the figures. This
corresponds with the fast integrator in the full model. It
is a leaky integrator, which is the heart of the model’s
control of accommodation. Its gain and time constant
are central to the model’s behavior. The model also
includes a neural bias signal, which is added onto the
integrator output. As discussed elsewhere in this article,
this bias helps to set the rest focus adopted in open-loop
viewing.

In the Results section, we demonstrate that the origi-
nal accommodative control system shown in Figure 5
predicts unrealistic latencies owing to integrator
wind-up, and we will discuss various alternatives.
Before proceeding to this discussion, it will be helpful
to discuss various aspects that apply to all models
discussed in this article.

Modeling rest focus as a neural bias

When we run the model in open-loop mode with the
defocus signal clamped at zero, as if viewing through
pinholes, the estimated future defocus and thus the
integrator output must also be zero. If accommodation
were driven solely by the integrator output, the neural
control signal should, therefore, take on its minimum
value, and the ocular power should be close to the
closed-loop value for distant stimuli. Yet this is not
observed empirically. Instead, accommodation is
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Figure 5. Structure of the accommodative control system (yellow block in Figure 1) in the version we refer to as the “original model.”
This is as in Read et al. (2022), but with refractive error and a minimum neural accommodative signal added and with extraneous
elements (noise, slow integrator, proportional signal) not relevant to this article removed for simplicity. Signals drawn in blue are
those affected by the VRE inside the blue virtual plant block. The virtual plant is identical to the Ocular Plant block shown in Figure 2.
The output of the green Demand Extrapolator block is shown as a general function X, which is assumed to be linear so that X(input +
constant) = X(input) + constant. In our Simulink models, X is the identity, that is, the demand extrapolator simply assumes that the
stimulus demand will remain at its current value. Here and subsequently, we use the adjective “predicted” (e.g., predicted future
power) to refer to the control system’s computation of external signals, which are error free in our model (because they depend only
on the system’s own behavior and on the properties of the ocular plant, which could in principle be learned by the brain and are
known to our model). We use the term “estimated” (e.g., estimated future demand) to refer to the control system’s computation of
external signals that are not fully within its control, for example, because they depend on the self-motion of scene objects. NB and
NM are abbreviations for the model parameters NeuralBias and NeuralMyopia, respectively. VRE, virtual refractive error. As discussed
in the text, where demand extrapolation is linear, the VRE can be set to zero without loss of generality. Notice that, here and
subsequently, to limit clutter we do not show the accommodative convergence signal, but it remains equal to the integrator output.

substantially higher: there is a nonzero “rest focus,”
on average around 1.4 D, even after correction for
refractive error (Fisher, Ciuffreda, & Levine, 1987;
McBrien & Millodot, 1987; Rosenfield, Ciuffreda,
Hung, & Gilmartin, 1993). This finding implies a
neural bias signal that operates even in the absence of
any input to the system. To account for this factor,
our model includes a constant signal added on to the
integrator output (block labelled “neural bias” at the
top of Figures 4–7). The value of this signal is the
parameter NeuralBias of our model, abbreviated NB
(Table 1). Note that the rest focus itself, and thus the
accommodative lag/lead, depends on refractive error as
well as on the amount of neural bias; this effect can be
seen in Figure 7.

Modeling the relaxation of accommodation
with cycloplegia: Neural myopia

With a positive neural bias, the closed-loop response
for stimuli at optical infinity is predicted to be positive

instead of exactly zero. If control were purely linear,
then by using fogging lenses to apply sufficient negative
demand, it would be possible to counter a positive
neural bias and fully relax accommodation by purely
optical means. Empirically, however, this is not possible
in most people: even after relaxing accommodation
as much as possible optically, pharmacological
cycloplegia causes a further decrease in ocular power
(Bagheri et al., 2018; Hiraoka et al., 2013; Yoo,
Cho, Kim, & Baek, 2017). This finding suggests that
the oculomotor nerve signal has a minimum value
below which it cannot decrease, which in turn keeps
accommodation at a minimum value: effectively,
a form of neural myopia. Cycloplegia blocks this
minimum signal, enabling accommodation to relax
completely.

To account for this, we added the saturation block
labeled “neural myopia” in Figures 4, 5, and 6. This
saturation block has no upper limit (i.e., the upper
limit is set to infinity), but its lower limit is set to the
parameter NeuralMyopia, abbreviated NM (Table 1).
Inputs exceeding NM are passed through unchanged,
while all inputs less than NM result in output NM.
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Figure 6. Accommodative control system of the proposed new model. As in Figure 5, but we have removed the refractive error term
from the virtual plant, because as shown above this does not change behavior. In consequence, the signals labeled “demand” actually
represent “demand minus refractive error” We have added a saturation block, outlined in red and labeled “not too far.” There are
now two virtual plants: a “realistic virtual plant” outputting the predicted future accommodation, with the same finite range as the
physical plant, and an “idealized virtual plant” outputting the ideal accommodation, with no upper limit. The latter is important for
computing an appropriate accommodative convergence signal. Signals shown in color match colors used in results figures.

Figure 7. Time courses of ocular power for a stimulus which is initially at infinity (0 D), then moves to 33 cm (3 D) at t = 10 seconds,
then moves back to infinity at t = 20 seconds, for three different functionally presbyopic observers with accommodative range of 4 D
and refractive errors indicated in the legend, for i) the original model (Figure 5) and ii) our proposed new version (Figures 4 and 6).
The myope and emmetrope have different steady-state responses to the 3-D stimulus; this is because of different accommodative lag
owing to different rest focus (both have the same neural bias, 1.4 D, but rest focus also depends on refractive error). Dashed vertical
lines mark the time of step changes in demand, and dotted lines these plus the sensorimotor latency of 300 ms. This figure was
obtained with Matlab file PlotOcularPowerDifferentRE.m.
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Unlike the linear neural bias, this nonlinear effect
cannot be overcome with negative demand owing
to fogging lenses. Cycloplegia abolishes it via a
downstream gain, explaining the additional relaxation
observed with cycloplegia.

Note on the definition of tonic accommodation

“Tonic accommodation” is often used to refer to
the neural signal driving the rest focus measured in
darkness or in open loop (McBrien & Millodot, 1987;
Rosenfield et al., 1993). This factor corresponds with
our neural bias parameter, NB. However, other workers
define “tonic accommodation” as “the eye’s normal
functional state for distance” in closed loop (Hiraoka
et al., 2014), which would correspond with our neural
myopia parameter, NM, plus any refractive error.
To avoid confusion, we do not use the term tonic
accommodation.

Note on the definition of refractive error

In this article, we define refractive error as the
optical power of the eye when accommodation is fully
relaxed. However, in general, accommodation cannot
be relaxed fully unless the eye is completely cyclopleged.
It follows that our RefractiveError parameter represents
the optical power of the eye under cycloplegia. In
our model, the optical power measured when the
uncyclopleged eye views an object at infinity, or through
plus lenses, is RefractiveError+NeuralMyopia. In some
empirical studies, what is referred to as the refractive
error may, therefore, correspond in our model with the
optical refractive error plus neural myopia.

The brain does not need to know its own
refractive error

In Figure 5, the virtual plant model is shown
as including a virtual refractive error (VRE) term.
However, the value of this term does not affect the
behavior of the model, at least when the demand
extrapolator block is linear. To show this, the small blue
labels in Figure 5 mark on the values of selected signals,
starting with the accommodation output by the virtual
plant, a(t), and the sensed defocus error, e(t). As shown
in Figure 5, the value of VRE affects the predicted
ocular power and thus the estimate of demand fed
into the Demand Extrapolator block. Let’s denote
the function performed by the Demand Extrapolator
block as X(input). If the function X is linear, then
by definition X(input + VRE) = X(input) + VRE.
The VRE term then cancels out when the predicted

future power is subtracted from the estimated future
demand. Thus, the estimated future defocus, drawn
pink in Figure 5, is independent of the value of VRE.
The value of VRE affects the internal signals shown in
blue, but has no effect on the overall transfer function
of the accommodative control system. VRE can thus,
without loss of generality, be set to zero, and we will
adopt this simplification in the rest of the article. Thus,
none of the models discussed in this article require us
to postulate that the brain has any information about
the ocular refractive error.

Developing a new model

As we show in the Results, the problems with current
models stem from the same basic problem: excessive
integrator output during exposure to stimuli beyond
the accommodative range, which then leads to long
latencies to subsequent stimuli within range. To fix the
issues, we assume that neural control is sophisticated
enough to recognize that sustained charging in such a
situation is unhelpful, and takes steps to avoid passing
sustained uncorrectable defocus to the integrator.

Figure 6 shows the accommodative control system of
our proposed new model (see Figure 4 for the complete
system, including stimulus and eye). To avoid wind-up,
our new model postulates that the estimated future
demand passes through an additional saturation block,
outlined in red in Figure 6 and labeled “not too far.” If
the estimated future demand is beyond the observer’s
far point, its output is zero. This means that stimuli
whose accommodative demand is unattainable because
they are beyond the observer’s far point are treated as
if they were at the far point. However, the saturation
block has no upper bound, so stimuli that are closer
than the near point are treated normally, as if these
demands were attainable, as indeed they could be by an
ideal young eye. The output of this saturation block
is, therefore, labelled the “estimated future ideally
attainable demand.”

The “not too far” saturation block stops the
integrator being wound up by uncorrectable negative
defocus, caused by unattainable “too far” demand. We
now need to ensure that the integrator is not wound
up by uncorrectable positive defocus, caused by an
unattainable too near demand. To achieve this, we
postulate that, when estimating future correctable
defocus, the brain subtracts off the accommodation
predicted for an ideal eye with unlimited range of
accommodation, rather than for its own limited range.
This is shown by the block labelled “idealized virtual
plant” in Figure 6. This avoids integrator wind-up
because the predicted future ideal accommodation
matches the estimated future ideally attainable demand,
resulting in very low steady-state input to the integrator.
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The fact that both are unattainable in practice makes
no difference to the steady-state response.

However, there is one important difference in the
time course. Because the idealized virtual plant still
has the same finite time constant as the real plant, an
increase in the estimated ideally attainable demand
takes time to produce an increase in the predicted
future ideal accommodation. There is thus a transient
correctable defocus signal which produces a change
in integrator output. We propose that this transient
signal is what produces the AC response observed for
increases in too near demand.

Conversely, decreases in too far demand are clipped
at the saturation block and never feed through to
produce even a transient change in the defocus
signal. This explains why such decreases do not
produce an accommodative–divergence response.
This is how our proposed accommodative control
system, Figure 6, accounts for the asymmetry between
the accommodative–vergence responses for stimuli that
are too near versus too far.

Simulation details and model parameters

Simulations were run in Matlab Simulink,
R2019a, using a fixed-step solver with timestep
set to 1 ms. All models and code are provided
with the article, and are available to download at
https://doi.org/10.25405/data.ncl.21909279.

Results

Current models produce unrealistically long
latencies after stimulation beyond the
accommodative range

The central topic of this article is the unrealistically
long latencies observed in current models after exposure
to demands beyond the accommodative range of the
simulated observer. This is demonstrated in Figure 7.
Here and in subsequent figures, results for the original
model are shown on the left and results for our
proposed newmodel are shown on the right, to facilitate
comparison.

In Figure 7, the time course of the stimulus effective
demand is shown in yellow. It steps from 0 D at time
zero up to +3 D at t = 10 seconds and back down to
1 D at t = 20 seconds. The accommodative response
is shown for three simulated observers with different
amounts of refractive error: an emmetrope with 0 D,
a myope with +2 D, and a hyperope with −2 D. All
simulated observers are assumed to have the same total

accommodative range, 4 D, and the same minimum
neural accommodative signal, 0.2 D.

The emmetrope and hyperope accommodate close
to 0 D for the 0-D stimulus, but the myope only gets
to around +2.2 D, reflecting their refractive error plus
the minimum neural accommodative signal. They thus
experience defocus while viewing this distant stimulus.
When the stimulus demand steps up to 3 D at t = 10
seconds, the emmetrope and myope both successfully
get close to 3 D, but for the −2-D hyperope, +3 D is out
of range. Finally, when the stimulus demand steps down
to 1 D at t = 20 seconds, the emmetrope and hyperope
successfully accommodate close to this value, but the
+2-D myope cannot focus on objects this far away.

These steady-state values are as expected for the
specified refractive errors, accommodative range, gain
and minimum neural accommodative signal. However,
notice the latencies for the original model (Figure 7i). At
t = 10 s, the emmetrope and hyperope begin responding
immediately after the expected sensorimotor latency of
300 ms. However, the myope does not begin responding
until some seconds after the step change in demand.
Similarly when the demand drops to 1 D at t = 20
seconds, and the other simulated observers begin
relaxing accommodation after 300 ms as expected, the
hyperope does not begin responding until 1,700 ms
after the stimulus change. As discussed, these long
latencies are extremely unrealistic and, thus, indicate
a problem with current models. Figure 7ii confirms
that our proposed new model does not show these long
latencies.

The excessive latencies are caused by excessive integrator
output in current models

Figure 8iA illustrates the underlying reason for the
long latencies in the original model, for the example
of an uncorrected +2-D myope observing a stimulus
which is initially at a distance of 4 D, then at t =
5 seconds switches to 0 D, then at t = 20 seconds
switches back to 4 D. This demand time course is shown
in Figure 8iA by the thick brown line with yellow dots.
The remaining curves show various signals for the
myopic observer. The cyan line shows the time course
of the ocular power, and the dark green line shows the
time course of accommodation, which is 2 D lower than
the ocular power owing to the myopic refractive error.
When the stimulus is at 4 D, the ocular power is close
to 4 D (a little less owing to accommodative lag), so the
stimulus is in focus. When the stimulus moves to 0 D at
t = 5 seconds, the myope relaxes accommodation to the
minimum permitted by neural myopia, NM = 0.2 D,
but owing to their +2-D refractive error they cannot
bring the ocular power below +2.2 D. They. therefore.
experience a steady-state defocus error of −2.2 D (red
and pink traces in Figure 8iB).
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Figure 8. Time -courses of signals for a model myope with +2-D refractive error and accommodative range of 10 D, when stimulus
demand steps from 4 D to 0 D at t = 5 seconds and then back from 0 D to 4 D at t = 20 seconds (vertical dashed lines). In this
example, the effective demand is equal to the distance demand; we show both for consistency with subsequent figures. The vertical
dotted lines mark 300 ms after each stimulus change, that is, the usual sensorimotor latency. In the original model, (i), the initial
relaxation of accommodation occurs with this latency after t = 5 seconds, but the subsequent accommodative response is delayed
over 2 seconds beyond the usual latency, because of internal adaptation to the previous tonic defocus error, as shown in (B).
See Figures 5 and 6, respectively, for where the internal signals are taken from in the two models; the same colors are used here as
in Figure 4. In the figure legend, “(attainable)” and “(correctable)” apply only to the proposed model (ii) (see Figure 6), because the
original model (i) (see Figure 5) does not make these distinctions. Recall that in both models, estimated demand is relative to the
refractive error. Note the very different y axes in (iB) versus (iiB). This figure was obtained with Matlab file PlotSignalsForMyope.m.

This negative defocus error feeds into the integrator
(purple trace in Figure 8iB). The output of the
integrator thus becomes more and more negative,
eventually asymptoting to a value around −17 D,
representing its gain of 8 multiplied by the constant
defocus error of −2.2 D. The desired command is equal
to the output of the integrator plus the neural bias,
here 1.4 D. However, the actual motor signal cannot
be negative, so remains fixed at 0 (light green trace
in Figure 8iAB). The lens remains fully relaxed, but
the refractive error means that the system continues to
experience −2 D of defocus.

At time t = 20 seconds, the stimulus changes back
to +4 D and after the sensory latency of 200 ms, the
sensed defocus thus jumps to +1.8 D. The input to the
integrator thus becomes positive, and the output of the
integrator rises rapidly. However, because the neural
control signal is not allowed to be negative, no change
in motor signal occurs until the combination of the
integrator output and the neural bias exceeds the neural
myopia. In this model the neural bias is 1.4 D and
neural myopia is 0.2 D (Table 1), so this occurs once the
integrator output exceeds −1.2 D. From the integrator’s
starting point of −17 D, this takes around 2 seconds to

occur. Thus, the motor signal does not become positive
until 2 seconds after the increase in demand, and so
no change in ocular power or sensed defocus is seen
until that point. The original model thus predicts that,
after far viewing, the myope has an enormous, 2-second
latency before they begin refocusing on near objects.

In contrast, in the proposed new model (Figure 8ii),
the lower bound of the red “too far” saturation block
shown in Figure 6 means that the estimated future
attainable demand is clipped at 0 D, instead of being
−2 D, as it was in the original model (Figure 8iB; recall
that estimated demands within the accommodative
control system are expressed relative to the refractive
error). Accordingly, although the sensed defocus is
again −2.2 D (red trace in Figure 8iiB), the estimated
future correctable defocus is now only −0.2 D (dashed
pink trace in Figure 8iiB: 0 D attainable demand minus
0.2 D accommodation). The integrator thus asymptotes
to only −1. 6D (−0.2 D times its gain of 8; purple trace
in Figure 8iiB).

When the stimulus then jumps 2 D to +4 D at t = 20
seconds, the defocus error also jumps 2 D, from −2.2 D
to +1.8 D. The estimated future demand relative to
refractive error is now +2 D, which is within the range
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Figure 9. Time courses of signals for a model emmetrope viewing a stimulus at infinity through a +2-D external fogging lens, before
the distance demand steps from 0 D to +4 D at t = 2 seconds (vertical dashed line). The original model (i) predicts a long delay before
the emmetrope focuses on new effective demand at 2 D, because of adaptation during the preceding period of fogging. Dotted lines
mark the time a response would normally begin, that is, the sensorimotor latency (here 300 ms) after the change in demand. Note
the different scales of the y axes in (iB) versus (iiB). Other details as for Figure 8. This figure was obtained with Matlab file
PlotSignalsForEmmetropePlusLens.m.

of the myopic observer, and so the estimated future
attainable demand also becomes +2 D. The estimated
future correctable defocus therefore transiently becomes
the actual defocus, +1.8 D. Because the integrator starts
from a value of only −1.6 D, it takes virtually no time
to reach the threshold value of −1.2 D, beyond which
the motor signal starts to increase. Accommodation
therefore starts increasing virtually as soon as the
sensorimotor latency allows, that is, 300 ms after the
stimulus change (dark green trace in Figure 8iiA). As
accommodation increases, defocus falls and the system
enters a new steady state.

External lenses
Similar excessive predicted latencies are also seen

when refractive error is simulated with external lenses.
For example, Figure 9 shows the model predictions for
an emmetrope viewing through a +2-D fogging lens.
Initially, the observer is viewing a stimulus physically at
infinity, so the effective demand is −2 D (yellow dotted
line in Figure 9A). They experience a steady −2.2 D
of defocus blur (red, dotted pink lines in Figure 9B)
owing to the +2 D plus lens and their inability to relax
accommodation below their neural myopia of 0.2 D.
In the original model, this negative defocus error feeds
into the integrator, which therefore asymptotes at a
large negative value (again around −17, representing

its gain of 8 multiplied by the constant defocus error
of −2.2 D). Subsequently, when the stimulus moves to
a distance of +4 D, the emmetrope accommodates to
+2 D, so that the stimulus seen through the +2 D lens
is in focus. However, owing to the previous steady-state
defocus and the resulting large negative value of the
integrator at the time of the change, there is a delay of
>2 seconds before they make this response and, thus,
before sensed defocus decreases.

In the proposed new model, there is again a large
sensed defocus error of −2.2 D, but the estimated
attainable demand is again 0 D. This factor ensures
that the estimated future correctable defocus remains
at −0.2 D (pink dotted line in Figure 9iiB). Thus, the
asymptotic output of the integrator is again −1.6 D,
despite the sustained large defocus. Thus, when the
stimulus moves closer at t = 2 seconds, we see ocular
power increasing in response just after the 300 ms
sensorimotor latency (dashed line at t = 2.3 seconds).
We do not see the unrealistic 2-second latency shown by
the original model in Figure 9iA.

Figure 10 shows another example. This is for a
model hyperope with a refractive error of −4 D and
accommodative range of 6 D, who can therefore focus
on stimuli from −4 D to 2 D. In this example, the
stimulus distance is 4 D throughout (heavy brown line
in Figure 10A), closer than their maximum ocular
power of 2 D. Thus, when viewed without corrective
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Figure 10. Time courses of signals for a hyperope with a refractive error of −4 D and accommodative range of 6 D, before and after a
corrective lens is applied at t = 2 s. The stimulus distance demand is constant at +4 D; a corrective lens of +4 D is added at t = 5
seconds, reducing the effective demand to 0 D. Other details as for Figure 8. This figure was obtained with Matlab file
PlotSignalsForHyperopePlusLens.m.

lenses (t < 2 seconds), the demand appears with
+2 D of defocus blur even though the hyperope is
accommodating as much as they can (accommodation
6 D, ocular power 2 D). At t = 2 seconds, a corrective
lens of +4 D is applied, fully correcting the hyperopia.
The hyperope can now relax accommodation to 4 D
and focus on the stimulus. However, because the
integrator is charged to 16 D after the prolonged
defocus (2 D defocus times gain of 8, purple trace
in Figure 10iB), the original model predicts that
no relaxation of accommodation occurs until more
than 2 seconds after the lens is applied (dark green
accommodation trace in Figure 10iA). Similarly the
sensed defocus jumps from +2 D to −2 D when the
+4 D lens is applied, but no reduction in the magnitude
of defocus occurs until ∼1.5 seconds later (red trace in
Figure 10iA).

Again, the new model fixes these problems because
the integrator was not allowed to charge up to high
values. The sensed defocus was still 2 D, reflecting an
estimated demand of +8 D relative to the refractive
error, but the brain predicted that the idealized virtual
plant would be able to accommodate to 7.3 D. It,
thus, estimates the correctable defocus as only 0.7 D,
so the integrator asymptotes at 5.9 D. Accordingly,
accommodation relaxes shortly after the plus lens is
applied, just a little after the 300-ms sensorimotor
latency (dark green accommodation trace in Figure
10iiA, latency marked with dashed vertical line at 2.3
seconds).

AC/A ratio

Figure 11 illustrates the problem with the
accommodative convergence signal, alluded to in the
Introduction. It represents the model’s predictions
for an experiment designed to measure the AC/A
ratio: the observer fixates monocularly, then the
experimenter inserts a minus lens and observes the
increase in ocular vergence angle owing to the increase
in accommodative demand. The stimulus AC/A ratio is
the ratio of this change in convergence to the change in
stimulus accommodative demand (Alpern et al., 1959;
Evans & Pickwell, 2007; Stidwill & Fletcher, 2011). As
discussed in the Introduction, in current models the
accommodative convergence signal is drawn from the
output of the accommodative integrator, multiplied by
the AC gain and added onto the output of the vergence
integrator (Figure 1). The change in vergence in this
experiment is, therefore, proportional to the change in
output of the accommodative integrator produced by
the addition of the minus lens.

Figure 11iA shows the predictions of the original
model when a functional presbyope with maximum
ocular power of +2 D views a stimulus at 0 D, with a
−1-D lens inserted at t = 2 seconds. This all works as
expected. When the −1-D lens is inserted, the ocular
power increases by approximately 1 D to compensate,
reflecting a similar increase in the integrator output.
If the change in convergence reflects the change in
integrator output, as in Figure 1, then the stimulus
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Figure 11. Time courses of signals for a functional presbyope with a maximum ocular power of 2 D, before and after a −1-D diverging
lens is applied at t = 2 s, as in an experiment to measure AC/A ratio. The stimulus demand is constant, at (A) infinity, 0 D and (B) the
observer’s maximum ocular power, 2 D. The “stimulus AC/A ratio” is obtained by dividing the total change in integrator output by the
change in the effective demand. This assumes that the accommodative-convergence signal is the output of the accommodative
integrator, as in Figure 1, with unit gain. This figure was obtained with Matlab file PlotACAratio.m.

AC/A ratio would be proportional to the change in
integrator output. In the figure legend, we have recorded
this as “stimulus AC/A ratio,” assuming for simplicity
that the constant of proportionality is 1. (This stimulus
AC/A ratio ends up being a little over 1 (1.2) owing to
the neural myopia; see discussion around Figure 14.)

However, Figure 11iB shows the problem
encountered if the baseline stimulus is closer than the
observer’s maximum ocular power of 2 D: at 4 D, in this
example. The observer experiences sustained defocus
of +2 D, that is, the difference between the demand
of 4 D and their maximum accommodation of 2 D.
This defocus drives the integrator output to around
16 D (2 D times its gain of 8). Adding the −1-D lens
increases the defocus to +3 D, driving the integrator
output up to 24 D. This, of course, has no effect on
ocular power, but would produce a further dramatic
increase in convergence. Whatever an observer’s AC/A
ratio is when the baseline stimulus is within their
accommodative range, the current model predicts that
it should be much greater for baseline stimuli closer
than the near point: multiplied by the gain of the
accommodative integrator.

Figure 11ii shows results for the proposed model.
Now, the predicted stimulus AC/A ratio actually
decreases slightly when the baseline stimulus is closer
than the near point.

The literature does show evidence for a transient
increase in AC/A ratio around the near point, but
not for all points closer than that. Figure 12 shows
data for two subjects, replotted from Alpern et al.

(1959). The red disks in Figure 12AB show the ocular
accommodation measured during monocular viewing
of a stimulus with the effective accommodative
demand shown on the x axis. The blue disks show
the measured convergence, converted to diopters
assuming an interocular distance of 7 cm. The blue
line in Figures 12C and 12D shows the stimulus
gradient AC/A ratio as a function of the initial demand.
This is computed by using the smoothed spline lines
in Figures 12A and 12B to estimate the increase in
ocular convergence when accommodative demand
increases by 1 D from the initial demand shown in the
x axis. The red line shows the same thing for ocular
accommodation.

Both subjects show AC/A ratios of approximately
1 over most of their accommodative range. However,
around the near point, AC/A ratio increases for both
subjects. Consider subject MJL (Figures 12B and 12D).
This observer has a maximum ocular power of around
6 D: beyond that point, his ocular power fails to
increase in response to increasing demand. However,
his ocular convergence not only continues to increase
but from 6D to 8 D, it actually increases more steeply
for each diopter of accommodative demand, resulting
in a nearly fourfold increase in stimulus AC/A ratio.
This result presumably represents the increase of
accommodative effort as the observer strains to focus
on the near stimulus, an effect qualitatively similar to
that seen in the original model (Figure 11). However,
this fourfold increase is still lower than plausible for
the integrator gain. And for still closer distances, the
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Figure 12. Experimental data digitized from Figure 3 of Alpern et al. (1959) for subjects HD (AC) and MJL (BD). (A and B) Red disks:
accommodative response function, that is, measured ocular accommodation as a function of the effective demand. Blue squares:
measured ocular vergence, converted into diopters to facilitate comparison, assuming an interocular distance of 7 cm. This reflects
accommodative convergence since the stimulus was monocular. Lines show smoothing splines fitted to data. (C and D) Red lines: the
change in ocular accommodation estimated when accommodative effective demand increases by 1 D from the value shown on the x
axis, computed using the fitted splines, that is, an approximation to the derivative of the accommodative response function, designed
to be comparable to the stimulus AC/A ratio as computed by the gradient method using a −1-D lens. Blue lines: ditto for vergence,
that is, the stimulus AC/A ratio. This figure was obtained with Matlab file Fig_AlpernKincaidLubeck1959.m.

stimulus AC/A ratio drops back to a value of around 1,
closer to the predictions of our new model.

Suggestively, however, we do see very large increases
in AC/A ratio when accommodation is paralyzed with
homatropine to produce a temporary presbyopia. Then,
efforts of accommodation are associated with large
increases in AC gain (Christoferson & Ogle, 1956). The
difference is that here, the range of accommodation
is limited pharmacologically, in a way that cannot be
known to the neural control system in advance. We
present simulations for pharmacological cycloplegia
below (Figures 14–17).

Cycloplegia: Hyperopic shift
As noted elsewhere in this article, the effect of

a cycloplegic drug is modelled as a gain change in
the oculomotor nerve signal (triangular gain block
in Figures 1 and 4). Importantly, the cycloplegic gain
reduction appears in the input to the physical plant,
but not in the input to the virtual plant, reflecting
the assumption that the brain is unaware of this gain
change. The cycloplegic effect is described by the
model parameter Cycloplegia, which ranges from 0 (no

cycloplegia, oculomotor nerve signal is unchanged)
to 1 (complete cycloplegia, oculomotor nerve signal
to the physical plant is abolished). Adding a lower
bound to the neural control signal, represented by the
model parameter NeuralMyopia, enables the model to
reproduce the hyperopic shift observed with cycloplegia.
The original model behaved sensibly under cycloplegia,
so this aspect of the model did not need fixing. We now
demonstrate that our proposed new model also gives
sensible results.

Figure 13 illustrates the hyperopic shift often
seen under partial and complete cycloplegia. This
figure shows the time course of accommodation for
five different simulated observers with the refractive
errors indicated in the color legend. Results are
shown for normal viewing, partial cycloplegia and
complete cycloplegia. For each observer, the value of
NeuralMyopia is 0.2 D. The observers are viewing
an object at infinity, initially with no external lens
and then through a +3-D fogging lens applied at t
= 5 seconds. With complete cycloplegia (dotted line,
Cycloplegia = 1), the value of accommodation is
exactly zero and so each observer’s ocular power is
simply their refractive error. In normal viewing with no
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Figure 13. Time course of accommodation for observers with 5
different refractive errors (color legend) with normal viewing
(solid line, model parameter cycloplegia = 0), with partial
cycloplegia (dashed line, cycloplegia = 0.5) and with complete
cycloplegia (dotted line, cycloplegia = 1). In each case, the
observer is viewing a stimulus at infinity (0 D) and their
accommodative range is 4 D. At time t = 5 seconds, a +3-D
fogging lens is added. The model is that shown in Figure 5
(“original model”) with parameters specified in this legend and
in Table 1. This figure was obtained with Matlab file
PlotOcularPowerCycloplegia.m. Results with the original model
are qualitatively similar for this example and are thus not
shown in the article, although they can be generated using the
Matlab file.

cycloplegia (solid line, Cycloplegia = 0), the minimum
value of accommodation is NeuralMyopia = 0.2 D. The
emmetropic (0 D) and myopic (+1 D, +2 D) observers,
therefore, end up with ocular power 0.2 D greater
than their respective refractive errors; the addition
of the plus lens at t = 5 seconds makes no difference
because they were already relaxing accommodation
as much as possible. The two hyperopic observers,
however, initially (during the first 5 seconds) need to
accommodate to bring the distant stimulus into focus.
During this time, their ocular power is a little lower
than that of the emmetrope, because it is set by the
finite gain of the feedback loop (accommodation is
already above the lower bound set by the minimum
neural signal). When the +3-D lens is applied at t =
5 seconds, the two hyperopes relax accommodation
and so their ocular power drops. The dashed lines
show similar results for partial cycloplegia (Cycloplegia
= 0.5). The key point is that, for each simulated
observer, the ocular power with cycloplegia (dashed
line) is lower than the ocular power measured with
distance viewing through plus lenses (solid line for
t > 5 seconds).

This confirms that placing a lower bound on the
signal sent to the oculomotor nerve gives a realistic
account of the effect of cycloplegia: cycloplegia
produces a hyperopic shift, regardless of the observer’s
original refractive error, as observed empirically
(Bagheri et al., 2018; Hiraoka et al., 2013; Yoo et al.,
2017).

Figure 14. Large AC/A ratio observed with cycloplegia, for both the original and proposed model. Time-courses of signals in (i) the
original and (ii) proposed model for an experiment in which an emmetropic observer views a distant stimulus, at 0 D, either with
normal monocular viewing (solid lines) or with pharmacological cycloplegia (dashed lines). At time t = 2 seconds, a −1-D lens is
inserted, raising the effective demand by 1 D. When the observer is cyclopleged, the resulting defocus cannot be corrected. Because
this is not predicted by the accommodative control system’s virtual model of the plant, the integrator output becomes very large. This
in turn would lead to very large stimulus AC/A ratios. This figure was obtained with PlotACARatioCycloplegia.m.
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Figure 15. Demand–response curve in the presence of cycloplegia, for the proposed new model. (A) Steady-state accommodative
response for the steady-state demand indicated on the x-axis, for the amount of cycloplegia indicated in the legend. (B) Magnitude of
the steady-state defocus error (i.e., accommodation lag). Crosses x mark the subjective near point assuming a blur threshold of 0.3 D,
that is, the highest demand for which steady-state defocus does not exceed 0.3 D. Model parameters are as in Table 1 with an
accommodative range of 10 D and 0 D refractive error. This figure was obtained with PlotNearpointCycloplegia.m.

Figure 16. Subjective near point and stimulus AC/A ratios in the presence of cycloplegia. (A) Subjective near point (crosses in
Figure 15B) as a function of the cycloplegia model parameter (where 0 indicates normal viewing and 1 complete cycloplegia).
(B) Stimulus AC/A ratio, estimated as the total change in integrator output before vs after a −1-D lens is inserted while the model
observer views a stimulus at 0 D (as in Figure 14), again as a function of cycloplegia. (C) Stimulus AC/A ratio relative to baseline (i.e.,
divided by the value measured with no cycloplegia) as a function of subjective near-point. Solid line: for the model observer shown in
(A); dots: for the representative subject of Christoferson and Ogle (1956); data digitized from their Figure 4. Model parameters are as
in Table 1 with an accommodative range of 10 D and 0 D refractive error. This figure was obtained with PlotNearpointCycloplegia.m.

Cycloplegia: Increase in the stimulus AC/A ratio

Figure 14 confirms that our model still predicts large
stimulus AC/A ratios with cycloplegia, as observed
empirically (Christoferson & Ogle, 1956). Figure 14
shows the integrator output and ocular power for
an emmetropic observer viewing a stimulus at 0 D,

before and after the effective demand is increased by
the insertion of a −1-D lens. Solid lines show the
normal responses, and dashed/dotted lines responses
when the observer has been partially or completely
cyclopleged. In normal viewing (solid lines), ocular
power is initially 0.2 D, reflecting neural myopia. The
steady-state defocus is thus −0.2 D and the integrator is
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Figure 17. Simplified version of the original model, suitable only for obtaining its steady-state response. Note that, in the steady state,
the predictive nature of the model is irrelevant. Small numbers show signal values for two examples, specified in the bottom right.

at −1.6 D. Following the insertion of the −1-D lens, the
ocular power increases to 1 D and the integrator output
rises to −0.4 D. This would imply a stimulus AC/A
ratio of around 1.2 (the exact value depending on the
AC gain and on the properties of the vergence control
system).

The dashed line shows the situation for partial
cycloplegia, with the model parameter Cycloplegia
= 0.5. This decreases the gain of the system, but
of course the virtual plant is unaware of the gain
change so the internal estimates of accommodation
and demand are erroneously high. The integrator
output also increases as it strives to keep the stimulus
in focus despite the lower gain. This reduction of gain
thus increases the AC/A ratio. Finally, dotted lines
show the situation for complete cycloplegia, where
the feedback loop is severed and ocular power is at
0 D throughout. Following the insertion of the −1-D
lens, the observer experiences sustained defocus of
+1 D. Critically, this is not predicted by the observer’s
accommodative control system, which is expecting the
lens to accommodate in response. Thus, the defocus is
classed as “correctable” and is fed into the integrator,
charging it up to saturation. The stimulus AC/A ratio
thus increases by roughly the gain of the integrator
relative to normal viewing, just as in the original model.

Cycloplegia: Demand–response curves
We now examine the effect of varying the amount

of cycloplegia in more detail. Figure 15A shows the

demand/response curve in the presence of different
amounts of cycloplegia. As expected, the gradient of
the line reduces as cycloplegia increases, becoming flat
when cycloplegia is complete.

The curves for partial cycloplegia show a distinct
“knee”: the gradient becomes much flatter for demands
beyond a certain point. This is not observed in
current models; there, the initial steep gradient persists
throughout. See the Appendix for a detailed discussion
of why this occurs.

Basically, the knee occurs because there are now two
virtual plants in the internal feedback loop (see Figures
2 and 7). The realistic virtual plant has an upper
saturation limit of the AR and is used to estimate
demand, whereas the idealized virtual plant has an
unlimited upper limit and is used to estimate correctable
defocus for both accommodation and accommodative
convergence. The knee occurs when the neural control
signal exceeds AR. As cycloplegia increases, this point
occurs at progressively lower demands, since cycloplegia
increases the neural control signal required to elicit
a given response. One can show mathematically that
the slope is G.CP′

1+G.CP′ for demands less than AR(CP′ +
G−1) and decreases to G.CP′

1+G+G.CP′ for greater demands,
where CP′ = 1 − Cycloplegia, AR, and G is the gain of
the integrator. In contrast, the original model predicts
a slope of G.CP′

1+G.CP′ throughout. We are not aware of
empirical data that would allow us to test which model
gives a better account of human responses, but this is
an interesting point for further study.
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Cycloplegia: Reduction in near point
Figure 15B shows how we infer the subjective near

point from the simulations shown in Figure 15A. The
subjective near point is the distance where observers first
notice a blur of the accommodative stimulus, and this
is lower than the upper range of accommodation (AR).
The colored traces in Figure 15B show the magnitude
of the defocus error (the difference between the demand
and response). The crosses x show the maximum
demand where the defocus remains less than 0.3 D,
taken to be the threshold for reporting perceptible blur.
Figure 16A shows how the inferred subjective near
point drops with increasing cycloplegia. Figure 16B
shows the stimulus AC/A ratio, before the knee,
estimated as in Figure 14: that is, while the model
observer views a stimulus at infinity, we add in a −1-D
lens and observe the change in integrator output, for
different values of the Cycloplegia parameter. Figure 4
in Christoferson and Ogle (1956) similarly plots AC/A
ratio and near point for their example observer as a
function of time since they administered homatropine.
We do not know the mapping from time to the value
of the Cycloplegia parameter, but we can examine the
agreement between model and data by plotting stimulus
AC/A ratio (normalized to baseline, since this differs
between observers) as a function of near point. This
is done in Figure 16C. The solid line shows results
for the model simulation; the dots are values for the
example observer of Christoferson and Ogle (1956).
Qualitatively, the agreement is good, with the AC/A
ratio increasing first slowly, then steeply, as near point
reduces. The main discrepancy is that Christoferson
and Ogle (1956) found that the maximum AC/A ratio
occurred after the minimum value of the near point (the
highest symbol in Figure 16B is not the leftmost).

Discussion

In this article, we have shown that conventional
ways of incorporating refractive error into models
of accommodative control predict unrealistically
long response latencies after periods of defocus,
whether these are due to refractive error, functional
presbyopia, or to fogging with external lenses. This
is a well-known problem within control theory,
occurring when actuators with limited range are used
with integrative control, and is known as integrator
wind-up (Astrom & Rundqwist, 1989; Fertik & Ross,
1967; Krikelis & Barkas, 1984). To our knowledge,
this problem has not been discussed before in the
context of accommodative control, presumably because
previous work has not examined the response of these
models to stimuli with unattainable demand. In real
life, however, such situations arise frequently owing to

imperfectly corrected refractive error and/or functional
presbyopia. It is thus important to produce models of
accommodative control which behave correctly in these
situations.

The contribution of this article is to argue that the
blur-driven signal to accommodative control is not
defocus error itself, but rather correctable defocus,
defined as defocus, which could be removed by an ideal
accommodative response. We thus adjust the predicted
demand input to the controller such that the signal fed
into the integrator is not the predicted future defocus
itself, but only that component of predicted future
defocus which is correctable by an idealized ocular
plant, that is, the estimated future ideally correctable
defocus (Figure 4). This model is just slightly more
sophisticated than existing predictive models of
accommodative control.

An unusual feature of this model is the use of two
separate virtual plants: a realistic one, incorporating
the actual accommodative range, to estimate stimulus
demand, and an idealized one to compute correctable
defocus. Why would the brain develop two separate
virtual plants? Perhaps because it is more efficient to
perform the same computation locally than to transfer
the information. Additionally, the outputs are used
for different purposes, so it may be advantageous to
develop separate virtual plants with different properties,
as we now discuss.

The realistic virtual plant enables the brain to
make realistic estimates of the stimulus distance from
defocus, supporting the use of defocus as a depth cue
(Held, Cooper, & Banks, 2012; Mather, 1996). This
step assumes that the brain has been able to accurately
estimate the eye’s accommodative range. This process
is not implausible, given that accommodative range
changes on a timescale of years, and that predictive
control already postulates that the control system has
learnt a model of the ocular plant.

The idealized virtual plant is used to compute
correctable defocus. The idealization is useful because,
owing to presbyopia, all humans end up experiencing
stimuli that are too close for them to accommodate
on. Yet there remains value in generating a positive
command signal in this situation, both to drive
accommodation to the maximum possible and to
assist convergence. However, an excessive command
signal would both produce inappropriate convergence
and delay the response to subsequent stimuli. The
idealized virtual plant generates a positive signal in this
situation, but ensures that it stays appropriate to the
demand (despite the lack of accommodative response).
In contrast, stimuli that are too far to accommodate
on should never occur for an emmetropic observer.
Commanding a negative accommodation is futile within
the accommodation system and, if passed on to the
vergence system, would produce disruptive divergence.
Accordingly, our model avoids generating any signal in
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this situation. This accords with the clinical experience
of author C.S. that myopes do not generally show
accommodative divergence when a stimulus already
beyond their far point is moved optically still further by
the addition of plus lenses.

Although our model postulates that the control
system learns the eye’s finite accommodative range,
it does not need to learn the eye’s refractive error.
Integrator wind-up is avoided whether or not the reason
for the uncorrectable defocus could in theory be known
to the brain (as in refractive error) or not (as with
fogging by an externally applied lens).

We have also extended the model to handle
pharmacological cycloplegia and demonstrate that
it gives sensible results for both the subjective near
point and the stimulus AC/A ratio in partial as well
as complete cycloplegia. This has revealed further
interesting nonlinear properties of our model, such as
the prediction that with partial cycloplegia, the slope
of the demand–response curve will not be reduced
uniformly, but will be reduced more strongly for larger
demands. This hypothesis seems reasonably plausible,
but has not been tested.

Our postulated modification is fairly simple,
plausible, and works well in a wide range of clinically
relevant situations for accommodation. Whereas the
original model showed unrealistically long latencies,
we believe our proposed model behaves much more
as clinicians would expect. Although we have not
simulated full accommodation/vergence models here,
we also believe that our modification also makes the
output of the accommodative integrator more suitable
for use as the accommodative convergence signal in
such models.

However, many other approaches are undoubtedly
possible. One limitation of our model is that we assume
defocus is the sole error function minimized by the
system. There could also be other inputs, for example,
voluntary or involuntary accommodative effort driven
by nonoptical cues to proximity. For example, the
increase in stimulus AC/A ratio reported by Alpern et
al. (1959) around the end of the accommodative range
might reflect an additional voluntary accommodative
effort, after the normal involuntary response driven by
defocus failed to clear the retinal image.

A similar simplification is that we assume that the
predicted future ideal accommodation and attainable
demand have no upper bound. More realistically, an
upper bound such as the amplitude of accommodation
at birth might be used to estimate the ideal attainable
bound (Dmax). This factor could perhaps be quantified
from empirical measures of the upper limit to
accommodative convergence (ACmax) in absolute
presbyopes, assuming that the gain of AC (AC/A ratio)
is fixed where Dmax = ACmax/(gain of AC).

Our discovery of this defect in current models has
highlighted a need for empirical data on how ocular

accommodation behaves during and after exposure to
stimuli beyond the accommodative range. Our model
makes specific predictions, which we believe are more
accurate than those of current models, but more data
in this regime might well reveal a need for further
modifications.

We also cannot know whether our model is at
all an accurate representation of the underlying
neurophysiology (McDougal & Gamlin, 2015). To our
knowledge, none of the existing literature can speak to
this, since no studies have examined the response to
stimuli out of the response range. For example, Zhang,
Mays, and Gamlin (1992) identified near response
neurons in the midbrain whose firing rate correlates
with ocular accommodation for stimuli within the
response range of the neuron. In our model, these
might correspond with the motor signal itself or with
the estimated future demand, or to the estimated
future limited demand, because all these correlate with
ocular accommodation for steady-state stimuli. Our
model makes different predictions about the behavior
of these three for stimuli out of the response range,
but these were not tested. Zhang and Gamlin (1998)
found far response neurons in the posterior interposed
nucleus of the cerebellum, whose firing rate increased
as accommodation decreased. Microstimulation of
this area often elicited decreases in accommodation
if accommodation was near, but had no effect if
accommodation was already far. Again, this finding is
consistent with our model, but hardly diagnostic. For
example, these far response neurons might represent
the output of the integrator with a sign inversion;
microstimulation would then request a decrease in
accommodation, but the saturation block in the
motor signal would explain the lack of response when
accommodation is already far. Much more detailed
neurophysiology, involving stimuli both within and
beyond the range of accommodation, will be needed
to elucidate whether this model really captures neural
computations. For such experiments, it will be critical
to present both correctable and uncorrectable defocus.
Our model predicts that at the sensory end of the neural
pathway, the response to defocus of a given magnitude
will be the same regardless of whether the defocus is
correctable or not. Closer to the motor output, one
should see a clear difference, with uncorrectable defocus
not eliciting a signal in the oculomotor nerve.

The model also suggests interesting lines of inquiry
regarding myopia progression. Myopic eyes tend to
become more myopic over time, whereas hyperopic eyes
are much more stable (Mäntyjärvi, 1985). Our model
postulates different anti–wind-up solutions for the
negative defocus produced by myopia and the positive
defocus produced by hyperopia. In our model, positive
defocus produces an initial accommodative signal
that we postulate is relayed by the accommodative
convergence cross-link to produce a convergence
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response. Thus, hyperopia produces an esophoria error.
However, in our model, the negative defocus error
produced by the stimuli beyond the far point is not fed
forward either to the accommodative integrator or to
the accommodative vergence system (achieved by the
saturation block labelled “not too far” in Figure 6).
Thus, myopia produces no exophoria error in this
situation, although it does for stimuli that are closer
than the far point. Could phoria error act as a penalty,
discouraging the increase of refractive error? If so, the
asymmetric is phoria produced by hyperopia vs myopia
could contribute to the difference in progression rates.

Whether or not our model proves to be a good
account of the computations actually performed in the
brain, it provides the most accurate account to date of
real accommodative responses in a range of clinically
relevant situations. Matlab Simulink models and code
are provided online which enable researchers to estimate
the response time course of human observers with
realistic clinical conditions to arbitrary accommodative
stimuli.

Keywords: presbyopia, accommodation, control
theory, computational modeling, refractive error
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Appendix

Understanding the slope change in the
demand/response curve with cycloplegia

For interested readers, we now go through why the
change in slope occurs for our new model (Figures
2 and 7), and why it does not for the original model
(Figure 5). To explain this, it will be helpful to
redraw both models in a simplified form suitable for
understanding their steady-state response. For this,
we can omit all delays, such as those owing to the
sensorimotor latency, because a steady-state signal is
unaffected by a delay, and we can replace all transfer
functions by their steady-state values. Thus, the
physical and virtual plant transfer functions disappear
altogether, as does the demand extrapolator, because,
for all these, in the steady state, the output of the block
equals the input to the block and so the block has no
effect. The integrator, meanwhile, is represented only by
its gain G.

In the original model, after these modifications a
further simplification becomes possible. Look at the
accommodative control system in the original model
(Figure 5). In the steady state, the predicted past and
estimated future demands are equal, as are the predicted
past and future accommodation signals. Effectively,
therefore, the signal from the virtual plant is added on
and then subtracted immediately. We can, thus, omit the
virtual plant altogether without changing the model’s
behavior. This simplified steady-state representation
of the model is shown in Figure 17. The predictive
nature of the full model (Figure 5) is not relevant in this
reduced steady-state version. Effectively, the control
system acts directly on the optical defocus (retinal error
signal), without reconstructing estimated demand. It is
now easy to see that, until accommodation reaches its
maximum value, AccomRange, cycloplegia acts purely
to reduce the closed-loop gain of the system. The slope
of the demand–response curve is reduced, but there is
no “knee.”
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Figure 18. Simplified version of our proposed new model, suitable only for obtaining its steady-state response. The small numbers
show the steady-state signal values under partial cycloplegia (CP = 0.6) for effective demands of 5 D [green] and 6 D [purple
numbers]). The accommodative range is an AR of 10 D and the gain od 8. The neural bias is set to zero for simplicity (NB = 0) and the
neural myopia is assumed to be small enough that its value does not affect the results. With the specified values, the “knee” is 5.25 D,
so the two example demands are on either side of this value.

The small green and purple numbers work through
two simple examples, both with partial cycloplegia
(=0.6) and for demands of 5 D and 6 D. The reduced
cycloplegic gain reduces the ocular power for a given
demand and, thus, increases defocus. The neural control
signal (output of the neural integrator) is thus much
larger than it would normally be to achieve the same
accommodation: the system is having to “work harder”
to achieve even these lower responses. Note that in
both examples, the ratio of response to demand is
the same, 0.76, reflecting the constant slope of the
demand/response curve.

Figure 18 shows a similarly simplified version of
our new model, again suitable only for modelling
the steady state. However, note that now the virtual
plant cannot be removed. This is because in our new
model there are effectively two virtual plants: one
incorporating the finite accommodative range of the
physical plant and one not limited in this way. The
predicted accommodation signal is the response of the
amplitude limited virtual plant, and the predicted ideal
accommodation signal is the response of the unlimited
virtual plant. Estimated demand is computed by adding
predicted accommodation to defocus, and the estimated
correctable defocus is computed by subtracting the

predicted ideal accommodation from the estimated
attainable demand. Thus, the estimated demand is
limited by the amplitude-limited virtual plant and
the estimated correctable defocus by the unlimited
virtual plant. When the neural control signal (output
of the neural integrator that drives the plants) does
not exceed the accommodative range of the physical
plant, then the predicted ideal accommodation and
predicted accommodation are equal. When equal, their
effects cancel when they are added and subtracted
when computing estimated demand and estimated
correctable defocus, respectively. Usually, the effective
demand (input) is positive relative to refraction, and the
estimated attainable demand is equal to the estimated
demand. Under these conditions, the estimated
correctable defocus equals the optical defocus.

Once the neural control signal exceeds the
accommodative range, the predicted accommodation
and predicted ideal accommodation will not be equal
and, thus, will not cancel when added to the defocus
and subtracted from the estimated attainable demand,
respectively. Additionally, although not relevant here, in
general the estimated attainable demand might not be
the same as the estimated demand, which could further
change results. Consider the example where the neural
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control signal exceeds the accommodative range of the
physical plant. In this example, it is clear from Figure 18
that the amplitude-limited predicted accommodation
signal will be less than the unlimited predicted ideal
accommodation. This means that, for sufficiently large
effective demands, the estimated correctable defocus
will be less than the optical defocus, whereas for smaller
demands they are equal. This effect is what causes
the change in slope of the demand/response curve
(Figure 15). This illustrates an interesting feature of
our proposed new model; namely, its predictive nature
remains relevant even in the steady state.

To go through this in detail, the small numbers
in Figure 18 show steady-state values for two different
demands, 5 D and 6 D, with partial cycloplegia.
The accommodative range is 10 D and cycloplegia
is 0.6; thus, the change in slope occurs at 5.25 D.
The 5-D demand (green numbers) is below this
point, so our new model responds exactly the same
as the original model (compare green numbers in
Figures 17 vs. 18). However, now consider the situation
for the 6-D demand (purple numbers). Here, the
accommodation under partial cycloplegia is 4.2 D.
Because of the cycloplegic gain reduction, to achieve
this value, accommodation requires a neural control

signal of 10.5 D, beyond the range of accommodation
(10 D). The brain thus estimates the attainable demand
as 11.8 D (10-D predicted accommodation, estimated
by the amplitude-limited virtual plant, plus the 1.8-D
defocus). This is actually slightly higher than the 11.4-D
estimated for the 6-D demand the original model
(Figure 17), owing to the higher optical defocus in our
model. However, to compute the estimated correctable
defocus, our model then subtracts the predicted ideal
accommodation of 10.5 D, effectively the signal from a
second virtual plant with unlimited amplitude. Because
the 10.5-D signal subtracted from this unlimited virtual
plant is larger than the 10-D signal originally added on
from the limited virtual plant, the estimated correctable
defocus signal, 1.3 D, ends up both being lower than
the actual defocus, 1.8 D, and lower than the defocus
fed into the integrator in the original model, 1.43 D
(Figure 17). Thus, the effective gain of the system is now
reduced even more than implied by the cycloplegic gain
reduction. This nonlinear effect accounts for the change
in slope of the demand/response curve (Figure 15):
from a 0.76-D change in response for each 1-D change
in demand for stimuli further than 5.25 D, to 0.26 D
change in response per 1-D change in demand for
nearer stimuli.
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