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In multistable dot lattices, the orientation we perceive is
attracted toward the orientation we perceived in the
immediately preceding stimulus and repelled from the
orientation for which most evidence was present
previously (Van Geert, Moors, Haaf, & Wagemans,
2022). Theoretically-inspired models have been
proposed to explain the co-occurrence of attractive and
repulsive context effects in multistable dot lattice tasks,
but these models artificially induced an influence of the
previous trial on the current one without detailing the
process underlying such an influence (Gepshtein &
Kubovy, 2005; Schwiedrzik et al., 2014). We conducted a
simulation study to test whether the observed attractive
and repulsive context effects could be explained with an
efficient Bayesian observer model (Wei & Stocker, 2015).
This model assumes variable encoding precision of
orientations in line with their frequency of occurrence
(i.e., efficient encoding) and takes the dissimilarity
between stimulus space and sensory space into account.
An efficient Bayesian observer model including both a
stimulus and a perceptual level was needed to explain
the co-occurrence of both attractive and repulsive
temporal context effects. Furthermore, this model could
reproduce the empirically observed strong positive
correlation between individuals’ attractive and repulsive
effects (Van Geert et al., 2022), by assuming a positive
correlation between temporal integration constants at
the stimulus and the perceptual level. To conclude, the
study brings evidence that efficient encoding and
likelihood repulsion on the stimulus level can explain the
repulsive context effect, whereas perceptual prior
attraction can explain the attractive temporal context
effect when perceiving multistable dot lattices.

Introduction

What we perceive is not only influenced by the
current stimulus we have in front of our eyes, but also by
the recent stimulus and perceptual history. Many recent
studies have confirmed the existence of both attractive
and repulsive effects of immediate temporal context on
perception (Bosch, Fritsche, Ehinger, & de Lange, 2020;
Fritsche, Spaak, & de Lange, 2020; Pascucci et al., 2019;
Sadil, Cowell, & Huber, 2024; Snyder, Schwiedrzik,
Vitela, & Melloni, 2015; Van Geert et al., 2022). Also in
the perception of multistable dot lattices, both attractive
and repulsive context effects are at play (Gepshtein
& Kubovy, 2005; Schwiedrzik et al., 2014; Van Geert
et al., 2022). On the one hand, the perceived orientation
in these lattices is attracted toward the orientation
perceived in the immediately preceding lattice (i.e.,
hysteresis, attractive effect of previous percept). On
the other hand, the perceived orientation is repelled
from the orientation for which most evidence was
present in the previous lattice (i.e., adaptation, repulsive
effect of previous stimulus evidence, Gepshtein &
Kubovy, 2005; Schwiedrzik et al., 2014; Van Geert et al.,
2022).

Several theoretically inspired models have been
proposed to explain the co-occurrence of these context
effects when perceiving multistable stimuli (Gepshtein
& Kubovy, 2005; Schwiedrzik et al., 2014), but these
models either artificially induce a direct influence
of the previous stimulus evidence on the likelihood
distribution for the current stimulus (Schwiedrzik
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et al., 2014) or induce a randomly determined shift
in prior bias from the previous to the current percept
(Gepshtein & Kubovy, 2005). From these models, it is
not clear why such a direct influence would occur, or
which underlying process would determine a random
shift in bias. In this simulation study, we investigate
whether an efficient Bayesian observer model based on
Wei and Stocker (2015) can explain the co-occurrence
of both attractive and repulsive temporal context
effects in multistable dot lattice perception. Earlier
variants of the efficient Bayesian observer model have
successfully been used to model effects in different tasks
involving non-ambiguous stimuli (Fritsche et al., 2020;
Langlois, Jacoby, Suchow, & Griffiths, 2021; Wei &
Stocker, 2015). In this study, we assess the viability of
explaining temporal context effects on multistable dot
lattice perception using an efficient Bayesian observer
model. As part of this investigation, we test whether
the model can not only successfully account for the
average temporal context effects observed in Van Geert
et al. (2022), but also for the observed range and strong
positive correlation of interindividual variation in both
effects.

Attractive and repulsive temporal context
effects: Separate but related mechanisms?

Whereas repulsive temporal context effects are often
seen as resulting from the previous stimulus evidence,
attractive temporal context effects are seen as resulting
from the previous percept, response, and/or decision
(Bosch et al., 2020; Sadil et al., 2024; Schwiedrzik et al.,
2014; Van Geert et al., 2022). This is often related
to repulsion being a more “low-level” phenomenon,
showing larger spatial and featural specificity than
the “higher-level” attraction (Fritsche et al., 2020;
Gepshtein & Kubovy, 2005; Schwiedrzik et al., 2014).
Schwiedrzik et al. (2014) also found both effects to
map into distinct cortical networks. Although many
researchers thus state that attractive and repulsive
effects result from separate processes (Brascamp
et al. 2008; Fritsche et al., 2020; Pascucci et al., 2019;
Schwiedrzik et al., 2014), others argue that both effects
share a common underlying mechanism (Gepshtein
& Kubovy, 2005; Mattar, Kahn, Thompson-Schill, &
Aguirre, 2016; Maus, Chaney, Liberman, & Whitney,
2013). Because Van Geert et al. (2022) found a strong
positive correlation between the size of individuals’
hysteresis (i.e., attractive effect of previous percept)
and adaptation effects (i.e., repulsive effect of previous
stimulus evidence), there needs to be at least some
common factor influencing both effects. On the other
hand, the results of Van Geert et al. (2022) did not bring
evidence for a completely unified process underlying
both effects, as the correlation estimate (already

corrected for attenuation) was only r = 0.68 (95%
highest density continuous interval [HDCI], 0.54–0.79;
cf. Figure 10a). We therefore hypothesize that both
effects stem from separate but related mechanisms, and
in this simulation study an efficient Bayesian observer
model is put forward to model the processes underlying
both context effects in a theoretically coherent way.

Attractive and repulsive temporal context
effects in multistable dot lattice perception

Gepshtein and Kubovy (2005) proposed a paradigm
to distinguish between attractive and repulsive context
effects on perception. They investigated the influence
of (a) the perceived organization of the preceding
stimulus (i.e., which organization was reported) and (b)
the stimulus support for a certain organization in the
preceding stimulus (dependent on the stimulus aspect
ratio [AR]) on the perception of a second, current
stimulus, using multistable dot lattices as stimuli.

Multistable dot lattices are aligned dot arrays in
which multiple orientations can be perceived. In
rectangular dot lattices, four different orientations
can be perceived (cf. left part of Figure 1a), two of
which are more prevalent. In hexagonal dot lattices
(cf. right part of Figure 1a), three equally plausible
orientations are most prominent. According to the
Gestalt law of proximity (Kubovy, Holcombe, &
Wagemans, 1998), the closer the dots are together along
a particular orientation, the more likely they will be
grouped together, and consequently, the more likely that
orientation will be perceived. Relative grouping strength
has been shown to decrease exponentially in accordance
with the relative inter-dot distance (Kubovy et al.,
1998). For two orientations a and b, the AR of a dot
lattice (AR = |a|/|b|) expresses the a orientation’s relative
dominance over the b orientation (cf. Figure 1b). For
a lattice with AR = 1, the inter-dot distance in the a
and b orientations is equal. For a lattice with an AR
of less than 1, the inter-dot distance is smaller in the
a than in the b orientation. For a lattice with an AR
of more than 1, the inter-dot distance is smaller in the
b than in the a orientation. In both rectangular and
hexagonal dot lattices, we define the axis orientation of
the dot lattice as a whole by the a orientation, which
we will refer to as the 0° orientation. In the rectangular
dot lattices, we will refer to the b orientation as the 90°
orientation.

The multistable dot lattice paradigm introduced by
Gepshtein and Kubovy (2005) to concurrently assess
attractive and repulsive immediate temporal context
effects on perception was later adapted by Schwiedrzik
et al. (2014, cf. Figure 1d). They used rectangular
dot lattices with randomly varying absolute lattice
orientation as context stimuli (presented for 800 ms)

Downloaded from abstracts.iovs.org on 04/20/2024



Journal of Vision (2024) 24(4):18, 1–20 Van Geert, Ivančir, & Wagemans 3

Figure 1. (a) Dominantly perceived orientations in multistable rectangular and hexagonal dot lattices. (b) Explanation regarding the AR
of a multistable rectangular dot lattice. In rectangular dot lattices, four different orientations can be perceived, of which two are more
prevalent (as the dots are closer together along these orientations). The relative dominance of the a orientation relative to the b
orientation is expressed in the AR of the dot lattice (AR = |a| / |b|). (c) Illustration of attractive and repulsive context effects in dot
lattices. Left side: attraction effect (hysteresis). When the first lattice (L1) is perceived as orientation a (indicated by “a”), the
probability that the second lattice (L2) will be perceived as orientation a is higher than when L1 was interpreted as orientation b
(indicated by “b”). Right side: repulsion effect (adaptation). When strong support for orientation a is present in L1, the probability that
L2 will be perceived as orientation a is lower than when L1 had less support for orientation a. (d) Illustration of trial structure. For
reasons of visibility, the shown trial components in this figure have black dots on a white background. The actual experiment had
white dots on a grey background. (e) Mean empirical logit probability of perceiving the relative 0° orientation in the first and the
second lattice dependent on the AR. The probability of responding 0° to the first lattice decreases with the AR (|a|/|b|). The value of
the AR increases with increasing distance in the 0°-orientation, leading to more 90° responses. The probability of responding 0° to the
second lattice increases with the AR (|a|/|b|; i.e., adaptation effect), and increases when the first stimulus was perceived as 0° rather
than 90° (i.e., hysteresis effect). Reprinted and adapted from Van Geert et al. (2022).

and more ambiguous hexagonal dot lattices with
the same random absolute lattice orientation as test
stimuli (presented for 300 ms). Participants indicated
which orientation they perceived in each lattice using a
four-alternative forced-choice task (always including
the most dominant orientations). To manipulate the
stimulus support for the 0° orientation, the AR of the
rectangular dot lattice was varied. They then assessed
how (a) perceived orientation and (b) the AR in the
first, rectangular lattice affected perceived orientation
in the second, hexagonal lattice. An attractive (i.e.,
hysteresis) effect of the previous percept was present,
as well as a repulsive (i.e., adaptation) effect of
the previous stimulus evidence: the probability of
perceiving a particular orientation in the second lattice
increased when the same orientation was perceived
in the first lattice, and the stronger the evidence for
a specific orientation in the first lattice, the lower the
probability to perceive that orientation in the second

lattice (cf. Figure 1c). These results by Gepshtein and
Kubovy (2005) and Schwiedrzik et al. (2014) were
replicated and extended by Van Geert et al. (2022, cf.
Figure 1e). Whereas Gepshtein and Kubovy (2005)
and Schwiedrzik et al. (2014) mainly explored the
existence of these effects on the group level, Van Geert
et al. (2022) tested whether individual differences
existed in the size of these effects, and whether every
individual participant showed both effects in the
expected direction. The results confirmed the presence
of large, consistent differences in the size of attractive
and repulsive context effects across individuals, and
these differences stayed stable across 1 to 2 weeks
time. Furthermore, almost every participant showed
both effects in the expected direction, although not
every single participant did. As indicated earlier in this
article, the results of Van Geert et al. (2022) provided
evidence for at least some common factor underlying
both effects, as individual differences in attractive
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and repulsive context effects were highly positively
correlated (cf. Figure 10a). Also, hysteresis (i.e., the
attractive effect of the previous percept) showed to be a
partially percept-related and a partially decision-related
effect, nuancing earlier debates on the origin of this
effect (Bosch et al., 2020; Cicchini, Mikellidou, & Burr,
2017; Fritsche, Mostert, & de Lange, 2017; Manassi,
Liberman, Kosovicheva, Zhang, & Whitney, 2018;
Pascucci et al., 2019; Schwiedrzik et al., 2018).

Now that the existence of both temporal context
effects on multistable dot lattice perception has been
firmly established, including consistent variation in
the size of the effects across individuals, one way
forward is to further our understanding of the processes
underlying these effects by developing models and
verifying whether they can reproduce and explain the
range of variability in effect size and direction across
individuals. Importantly, a good process model should
not only be able to predict a mean response, but also
plausible variation in the effect size and direction (Van
Geert et al., 2022).

Models of temporal context effects on
multistable dot lattice perception

Two earlier models of the multistable dot lattice
paradigm for hysteresis and adaptation exist (Gepshtein
& Kubovy, 2005; Schwiedrzik et al., 2014). In the model
of Gepshtein and Kubovy (2005), combinations of
attraction strengths (related to inter-dot distances in the
first, rectangular lattice and sensitivity to the inter-dot
distance) and a randomly determined persistent
intrinsic bias (i.e., a higher probability to perceive some
orientation more than others, which stays similar but
not identical from first to second lattice) determine
the perceived orientation in the second, hexagonal
lattice. When the intrinsic bias exceeds the stimulus
support (i.e., attraction strength), the multistable lattice
is perceived inconsistently with the stimulus support.
In this model, the direction of the intrinsic bias is
determined randomly, and it is not clear where the bias
comes from or which process determines the direction
of the bias.

Schwiedrzik et al. (2014) developed a Bayesian model
to account for the co-occurrence of hysteresis and
adaptation in multistable dot lattice perception. They
model both effects independently, with the perceived
orientation in the first lattice directly impacting the
prior distribution of possible perceived orientations for
the second lattice, and the reduction in stimulus support
due to neuronal adaptation to the AR of the first lattice
directly impacting the likelihood distribution for the
second lattice. In this model, the process behind the
direct change in the likelihood is not included and its
size is determined arbitrarily.

Based on the model by Wei and Stocker (2015),
we propose an alternative Bayesian model that can
explain the co-occurrence of hysteresis and adaptation
as separate but related processes influencing multistable
dot lattice perception. A similar model has been
applied by Fritsche et al. (2020) to explain attractive
and repulsive stimulus history effects in orientation
perception. They did look at the influence of previous
stimuli and went more than one stimulus back, but
did not distinguish between the effects of previous
percepts and previous stimulus evidence, and only used
non-ambiguous Gabor stimuli.

Efficient Bayesian observer models of
perception

A key assumption of an efficient Bayesian observer
model is that available coding resources are limited, and
that those feature values that occur more frequently will
be more accurately encoded or represented (i.e., the
principle of efficient coding, Wei, & Stocker, 2015). In
case of orientation perception, this variable encoding
precision will thus lead to frequent orientations
being encoded more accurately than less frequent
orientations. A second key feature of the model is that
it takes the dissimilarity between stimulus space and
sensory space into account (as in psychophysics). This
leads to differential predictions of adding external
stimulus noise, that is, noise related to uncertainty in a
specific stimulus feature (e.g., variance in orientation)
or internal sensory noise, that is, noise related to
uncertainty in encoding and processing (e.g., due to
presentation duration, stimulus size, or luminance
contrast). Whereas external stimulus noise will only
widen the likelihood distribution and increase the
overall influence of the prior (leading to stronger prior
attraction, “Bayesian” percepts), internal sensory noise
symmetric around the stimulus value in sensory space
will make the likelihood distribution asymmetric in
stimulus space and hence create the possibility for
biases away from the peak of the prior distribution (i.e.,
likelihood repulsion, “anti-Bayesian” percepts, Wei, &
Stocker, 2015). The relative amount of stimulus versus
sensory noise will determine which effect will show
behaviorally (i.e., attraction or repulsion).

More concretely, frequency of occurrence will jointly
influence prior and likelihood in the model. It influences
the prior distribution directly: more frequently
occurring orientations are also expected to occur more
often. However, the frequency of occurrence also
influences the mapping between stimulus and sensory
space: it influences the accuracy with which different
orientations will be encoded, and consequently also
the width and form with which different orientations
will be represented in the likelihood. In other words,
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the frequency of occurrence will determine the prior
distribution as well as how the currently encountered
stimulus will be encoded. The stimulus-to-sensory
mapping is given by the cumulative density function
of the encoding accuracy distribution, and the
sensory-to-stimulus mapping is given by the inverse of
that cumulative density function.

In the original model, frequency of occurrence was
seen on the long term. For example, in most daily
environments, cardinal orientations are more prevalent
than oblique ones (Coppola, Purves, McCoy, & Purves,
1998; Girshick, Landy, & Simoncelli, 2011). In later
versions of the model, however, it has been shown that
frequency of occurrence can also be defined on the short
term, e.g., with the frequency of occurrence changing
during the experiment (Fritsche et al., 2020; Ni &
Stocker, 2023; Noel, Zhang, Stocker, & Angelaki, 2021).
For example, Ni and Stocker (2023) demonstrated that
robust averaging (i.e., the non-uniform weighting of
items in a stimulus ensemble) emerged naturally from an
optimal integration process when sensory encoding (and
thus the stimulus-to-sensory mapping) was efficiently
adapted to the ensemble statistics in the experiment.
Their model accurately predicted the dependence of
subjects’ decision accuracy and non-uniform weighting
profile on the specific stimulus distribution in the
experiments. Furthermore, Noel et al. (2021) showed
that neurotypical participants adapted their sensory
encoding to the changing stimulus statistics when
they were exposed to an artificial uniform orientation
distribution coupled with performance feedback in
a visual orientation estimation task. Changes in the
frequency of occurrence on the short term may thus be
used to model short-term temporal context effects on
perception.

Fritsche et al. (2020) modeled attractive and repulsive
biases of stimulus history using an efficient Bayesian
observer model. In this model, they did not disentangle
effects of previous stimuli and previous percepts, but
treated all effects as related to the previous stimulus
evidence. In the empirical study they conducted,
they found evidence for short-term attraction and
long-term repulsion. When fitting different models to
the empirically collected data, a model with distinct
transition distributions and different integration time
constants for prior and likelihood performed better
than a model that used the same parameters for prior
and likelihood. In the prior distribution, only the most
recently presented stimuli mattered, and updating
was fast. In the likelihood distribution, information
was integrated over longer timescales, and updates
happened more slowly.

In a recent extension of the original model proposed
by Wei and Stocker (2015), Mao and Stocker (2024)
described perception as a holistic inference process,
where the percept of a stimulus is jointly represented
at different levels of a representational hierarchy. To

adequately model the (variation in) behavioral data
of an earlier study (Tomassini, Morgan, & Solomon,
2010), it was necessary to take the higher-level
representation into account (i.e., categorization of
orientation in this case).

An efficient Bayesian observer model for
temporal context effects on multistable dot
lattice perception

In this study, we develop an efficient Bayesian
observer model for the multistable dot lattices paradigm
used by Gepshtein and Kubovy (2005), Schwiedrzik
et al. (2014), and Van Geert et al. (2022) to assess
hysteresis and adaptation effects (cf. Figure 2 for
a schematic overview of the proposed model). In
addition, we investigate how several versions of the
model compare to the empirical results obtained by Van
Geert et al. (2022). More specifically, we test whether
model implementations can explain co-occurring
attractive and repulsive context effects, as well as a
range of plausible variation in effect size and direction
across “individuals” (in this case across simulations
with different parameter values). Furthermore, we test
whether the model can reproduce a positive correlation
between the size of both effects, as was empirically
observed in Van Geert et al. (2022).

Different from the original Wei and Stocker (2015)
model, we will not only implement a long-term
orientation prior (at least in some variants of the
model), but also take the short-term context into
account: the prior and stimulus-to-sensory mapping
for the second lattice will be updated based on the
stimulus evidence present for and the percept of the
first lattice. In line with the earlier efficient Bayesian
observer models that take short-term context into
account, we assume an influence of the stimulus history
(i.e., the frequency of occurrence of different stimulus
orientations) on the stimulus-to-sensory mapping and
consequently the likelihood distribution. In contrast
to earlier efficient Bayesian observer models, however,
we will argue that it is the perceptual history (i.e.,
the frequency of occurrence of different perceived
orientations) rather than the stimulus history that
determines the prior distribution. Different from the
implementation by Fritsche et al. (2020), the model
will distinguish attractive influences of the previous
percept and repulsive influences of the previous
stimulus evidence. Given that a mask was present in
the dot lattice paradigm to avoid longer-term context
effects, we only take the previous lattice into account
and do not model longer-term context influences
(different from what was the case in Fritsche et al.,
2020). Furthermore, the dot lattice paradigm concerns
multistable stimuli resulting in multi-peaked likelihood
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Figure 2. Schematic representation of the efficient Bayesian observer model for the percept of (a) the first lattice and (b) the second
lattice, with a uniform prior for the first lattice and the following parameter values: cstim = 5, κstimL1 = 20, κsensL1 = 20, κstimL2 = 20,
κsensL2 = 18, κpercL1 = 10, wstimL1 = 0.60, and wpercL1 = 0.50.

distributions, whereas previous implementations of
the efficient Bayesian observer model focused on
non-ambiguous stimuli (e.g., Fritsche et al., 2020;
Wei & Stocker, 2015). In sum, our model builds on
earlier models, but makes at least three innovative
contributions.

Methods

Efficient Bayesian observer model

In this study, we model the perception of two
consecutive dot lattices within one trial of the
paradigm. All model simulations were performed in R
(Version 4.0.4, R Core Team, 2021).1 All code related
to this paper is openly available on the Open Science
Framework: https://doi.org/10.17605/OSF.IO/48ESD.

The first lattice is a rectangular dot lattice with
varying AR across trials, the second is a hexagonal dot
lattice with three equally dominant orientations. First,
we develop the model for the percept of the first lattice.
Then, we update the prior and stimulus-to-sensory
mapping to predict hysteresis and adaptation effects
in the perception of the second lattice. Different from
earlier efficient Bayesian observer models, which assume
the actual frequency of occurrence of different stimulus
values (i.e., the stimulus history) to influence both the
prior and the likelihood in the model, we assume the
stimulus history to influence the stimulus-to-sensory

mapping and the likelihood, but the perceptual history
(i.e., the history of how earlier presented stimuli were
actually perceived) to influence the prior distribution
(i.e., the belief of the observer). When the history
contains only non-ambiguous stimuli, stimulus history
and perceptual history will approximately align, and
ignoring this distinction remains without consequences.
We will, for example, assume stimulus history and
perceptual history to be similar when we determine
the percept of the first lattice in each trial. However,
when the history contains multistable stimuli, for
example, when determining the percept of the second
lattice, this distinction between stimulus history and
perceptual history becomes evident and consequential.
As will be shown later in this article, a version of the
model that used the stimulus history to influence both
prior and likelihood could explain the occurrence of
adaptation, but not the occurrence of the hysteresis
effect. In contrast, the current version of the model,
which assumes the stimulus history to influence the
likelihood and the perceptual history to influence the
prior, is able to predict both co-occurring temporal
context effects. The adaptation effect will be due to
efficient encoding and likelihood repulsion on the
stimulus level, the hysteresis effect will be due to
prior attraction on the perceptual level. Therefore,
we will describe this model as hierarchical. The size
of the adaptation effect will depend on the relative
amount of stimulus noise and sensory noise present,
but the size of both context effects will depend mostly
on the weights given to the stimulus evidence and
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percept in the previous trial compared to the long-term
context.

Perception of the first lattice
We first model how an observer comes to perceive

either the relative 0° or the relative 90° orientation in the
first lattice. Over trials, both the AR and the absolute
orientation of the lattice are varied. The distribution
of absolute lattice orientations in the experiment is
uniform, but the long-term natural stimulus distribution
of orientations has peaks at both cardinal orientations.
As in earlier Bayesian encoding models, we assume
encoding resources to be allocated according to the
stimulus distribution (uniform in the experiment or
with peaks at the cardinals in the long term) so that
stimulus values that occur more frequently are more
accurately represented. Two types of noise are assumed:
external stimulus noise and internal sensory noise. The
external stimulus noise (symmetric in stimulus space) is
assumed to follow a von Mises (i.e., circular normal)
distribution on the 180° (i.e., half-circular) orientation
space with its mean at the actual stimulus orientation
value in question and its precision being equal to κstimL1.
The internal sensory noise (symmetric in sensory space)
is expected to follow a von Mises (i.e., circular normal)
distribution on the 180° (i.e., half-circular) orientation
space with its mean at the sensory measurement for
the actual stimulus orientation in question (based on
the stimulus-to-sensory mapping, derived from the
cumulative density function for the prior distribution)
and its precision being equal to κsensL1. The described
stimulus and sensory noise are jointly reflected in the
noise of the observer’s representation of the stimulus
orientation. The observer’s representation of the
stimulus orientation (subject to the stimulus noise
and sensory noise described earlier in this article) is
expected to be bimodal, with peaks at the relative 0°
and the relative 90° orientation.2 The relative height
of the peaks at the relative 0° and the relative 90°
orientation will depend on the AR of the stimulus
and the observer’s sensitivity for AR. This bimodal
distribution represents the likelihood, and is combined
with the prior distribution (either uniform in stimulus
space or with peaks at the cardinal orientations) to
compute the posterior distribution for the first lattice.
From the posterior distribution, either a relative 0°
or a relative 90° percept can be sampled with the
probabilities depending on the relative probability of
perceiving one versus the other orientation.

Prior distribution for the first lattice
In the prior distribution for the first lattice, the

long-term perceptual distribution for orientation
is represented. For this first lattice, we assume the
long-term perceptual distribution for orientation to

be equal to the long-term stimulus distribution for
orientation. We try two variants of the prior. In a first
variant, we use the same natural stimulus distribution
as in Wei and Stocker (2015):

p(θ ) = c0(2 − |sin(2θ )|), (1)

where c0 is a normalization constant and θ ∈ [0, π )
(cf. Supplementary Figure 1a). This natural stimulus
distribution reflects the fact that horizontal and
vertical orientations are more common in the natural
environment than oblique orientations. On the other
hand, within the dot lattice paradigm the long-term
stimulus distribution is uniform: every absolute lattice
orientation occurs equally frequently. Therefore, we
implemented a second variant of the model, with a
uniform prior distribution for the first lattice:

p(θ ) = 1
π

(2)

(cf. Figure 3a). The distribution used in this prior for
the first lattice will also affect the stimulus-to-sensory
mapping that is used in the calculation of the likelihood
distribution for the first lattice.

Likelihood function for the first lattice
Given that the first dot lattice is rectangular, it

has two dominant orientations, of which the relative
dominance is dependent on the AR of the lattice
and the observer’s sensitivity to AR. Here we assume
the observer’s representation of the first lattice to
be a weighted combination of the expected sensory
measurement for the 0° orientation and the expected
sensory measurement for the 90° orientation. In case
AR = 1, we expect the stimulus support to be equal
for both orientations, which will be represented by an
equal weight for both likelihood functions. In case AR
�= 1, one of the two sensory measurements will have a
stronger representation in the combined likelihood than
the other. To arrive at a double-peaked likelihood (cf.
Figure 3b), we combine the likelihoods for both sensory
measurements (i.e., the expected sensory measurements
for the relative 0° and the relative 90° orientation) in a
weighted fashion:

p(mL1|θ ) ∝ p(m0|θ ) · 1
1 + wAR

+ p(m90|θ ) · wAR

1 + wAR
,

(3)

with p(m0|θ ) being the single-peaked likelihood of the
sensory measurement for the relative 0° orientation,
p(m90|θ ) being the single-peaked likelihood of the
sensory measurement for the relative 90° orientation,
and wAR being equal to ARc_stim. The size of the AR
effect on the relative height of the 0° and 90° peaks is
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Figure 3. (a) Uniformly distributed prior for the first lattice. (b) Likelihood distribution defined in the stimulus space, for a first lattice
with an absolute lattice orientation of 23° and AR = 1.3−1, which favors the relative 0° orientation. (c) Posterior distribution for the
first lattice. Based on the difference in height of the peaks for the relative 0° and 90° orientation, i.e., p(0°) and p(90°), the probability
of a 0° or 90° response can be determined. Note. The red vertical lines in the graph are placed at the two dominant relative 0° and 90°
orientations in the lattice. The black vertical lines label the absolute 0° and 90° orientations.

thus determined by a constant (i.e., cstim), representing
the observer’s sensitivity to AR.

Each sensory measurement m is modeled as

m = F (θ + δstim) + δsens, (4)

with δstim representing the stimulus noise (added in
stimulus space), δsens the sensory noise (added in
sensory space), θ being the absolute orientation of the
stimulus, and the transformation F being the cumulative
distribution of the prior p(θ ), which determines the
stimulus-to-sensory mapping (Wei & Stocker, 2015). For
each stimulus orientation θ i, p(m|θ i) can be computed
according to (4) and the specific noise distributions.
Both single-peaked likelihood functions, i.e., p(m0|θ )
for m0 and p(m90|θ ) for m90, are generated with the
same level of stimulus noise (inversely represented in
the model as stimulus precision: κstimL1) and the same
level of sensory noise (included in the model as sensory
precision: κsensL1). As described earlier in this article, the
external stimulus noise (symmetric in stimulus space) is
assumed to follow a von Mises (i.e., circular normal)
distribution on the 180° (i.e., half-circular) orientation
space with its mean at the actual stimulus orientation
value in question and its precision being equal to κstimL1.
The internal sensory noise (symmetric in sensory
space) is expected to follow a von Mises (i.e., circular
normal) distribution on the 180° (i.e., half-circular)
orientation space with its mean at the expected sensory
measurement for the actual stimulus orientation
value in question (based on the stimulus-to-sensory
mapping, derived from the cumulative density function
for the prior distribution) and its precision being

equal to κsensL1. For implementational details on the
computation of the likelihood, we refer the interested
reader to the model code, which is publicly available on
OSF.

Posterior distribution and percept for the first lattice
To arrive at the posterior probability distribution

for the perceived orientation of the first lattice (cf.
Figure 3c), prior and likelihood are combined:

p(θ |mL1) ∝ p(θ ) · p(mL1|θ ). (5)

From this posterior distribution, the probability of
perceiving the relative 0° or 90° orientation can directly
be deduced, for example, for the relative 0° orientation:

p( ˆθL1 = 0◦) = p(θ = 0◦|mL1)
p(θ = 0◦|mL1) + p(θ = 90◦|mL1)

. (6)

In case one wants to derive perceptual responses,
one of the two dominant orientations can be sampled
with the relative posterior probability at these
orientations.

Perception of the second lattice
We model how an observer comes to perceive either

the relative 0° , the relative 60° or the relative 120°
orientation in the second lattice. Over trials, both the
AR of the preceding first lattice and the absolute
orientation of the lattices (same for first and second
lattice) are varied. The distribution of absolute lattice
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orientations in the experiment is uniform, but the
long-term natural stimulus distribution of orientations
has peaks at both cardinal orientations. As in earlier
Bayesian encoding models, we assume encoding
resources to be allocated according to the stimulus
distribution (uniform in the experiment or with peaks
at the cardinals in the long term) so that stimulus
values that occur more frequently are more accurately
represented. Two types of noise are assumed: external
stimulus noise and internal sensory noise. The external
stimulus noise (symmetric in stimulus space) is assumed
to follow a von Mises (i.e., circular normal) distribution
on the 180° (i.e., half-circular) orientation space with its
mean at the actual stimulus orientation value in question
and its precision being equal to κstimL1. The internal
sensory noise (symmetric in sensory space) is expected
to follow a von Mises (i.e., circular normal) distribution
on the 180° (i.e., half-circular) orientation space with
its mean at the expected sensory measurement for the
actual stimulus orientation value in question (based
on the stimulus-to-sensory mapping, derived from the
cumulative density function for the prior distribution)
and its precision being equal to κsensL1. The described
stimulus and sensory noise are jointly reflected in the
noise of the observer’s representation of the stimulus
orientation. The observer’s representation of the
stimulus orientation (subject to the stimulus noise
and sensory noise described above) is expected to be
multimodal, with peaks at the relative 0° , relative
60° and relative 120° orientation. This multimodal
distribution (with equal weighting for each of the
three distributions) represents the likelihood, and is
combined with a prior distribution to compute the
posterior distribution for the second lattice. The prior
distribution for the second lattice is a perceptual prior

distribution, defined as a weighted combination of
the prior distribution for the first lattice, indicating
the long-term frequency of occurrence (i.e., uniform
distribution or with peaks at the cardinals), and the
recent perceptual history (i.e., a von Mises distribution
with a precision of κpercL1 and its mean at the perceived
orientation for the first lattice). From the posterior
distribution, either a relative 0°, relative 60°, or relative
120° percept can be sampled with the probabilities
depending on the relative probability of perceiving each
of the three orientations.

Prior distribution for the second lattice
In the current version of the model, we assume

two different frequency distributions: a stimulus
frequency distribution affecting the stimulus-to-sensory
mapping and a perceptual frequency distribution
used in combination with the likelihood to form the
posterior distribution. A version of the model that
used the stimulus frequency distribution for both the
stimulus-to-sensory mapping and the prior distribution
could explain the occurrence of adaptation, but not the
occurrence of the hysteresis effect.
The stimulus frequency distribution determines the
stimulus-to-sensory mapping for the second lattice: The
stimulus frequency distribution for the second lattice
(cf. Figure 4a) is defined as a weighted mixture between
the posterior for the first lattice (representing short-term
context influences based on the stimulus evidence
present) and the prior for the first lattice (representing
longer-term context influences of the natural stimulus
distribution; both a prior peaking at the cardinals and
a uniform prior are tested, cf. above). If the weight
of the posterior compared to that of the prior is

absolute
0°

absolute
90°

.00

.01

.02

.03

−45° 0° 45° 90° 135°
relative orientation in stimulus space

pr
ob

ab
ilit

y

STIMULUS PRIOR 2a

absolute
0°

absolute
90°

.00

.01

.02

.03

−45° 0° 45° 90° 135°
relative orientation in stimulus space

pr
ob

ab
ilit

y

PERCEPTUAL PRIOR 2b

absolute
0°

absolute
90°

.00

.01

.02

.03

−45° 0° 45° 90° 135°
relative orientation in stimulus space

pr
ob

ab
ilit

y

LIKELIHOOD 2c
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Figure 4. (a) Stimulus prior for the second lattice given a first lattice with AR = 1.3−1, which favors the relative 0° orientation.
(b) Perceptual prior for the second lattice, given the relative 0° orientation was perceived in the first lattice. (c) Likelihood distribution
defined in the stimulus space for the second lattice. This distribution is influenced by the stimulus prior for the second lattice (and
hence the AR of the first lattice) via the stimulus-to-sensory mapping. (d) Posterior distribution for the second lattice, combining
perceptual prior and likelihood for the second lattice. Based on the difference in height of the peaks for the relative 0°, 60°, and 120°
orientation, the probability of a 0°, 60°, or 120° response can be determined. Note. The red vertical lines in the graph are placed at the
three dominant relative 0°, 60°, and 120° orientations in the lattice. The black vertical lines label the absolute 0° and 90° orientations.
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increased (i.e., higher wstimL1), the stimulus prior will
update more heavily based on the immediate stimulus
history.

p(θL2stim) ∝ p(θL1) · (1 − wstimL1) + p(θ |mL1) · wstimL1 (7)

The perceptual frequency distribution determines the
prior for the second lattice: The perceptual frequency
distribution for the second lattice (cf. Figure 4b) is
defined as a weighted mixture between the prior for
the first lattice (representing longer-term perceptual
context; both a prior peaking at the cardinals and a
uniform prior are tested, as discussed earlier in this
article) and a single-peaked von Mises distribution
around the perceived orientation of the first lattice. If
the weight of the single-peaked von Mises distribution
compared to that of the long-term perceptual frequency
distribution is increased (i.e., higher wpercL1), the
perceptual prior will update more heavily based on
the immediate perceptual history. Different from
the stimulus frequency distribution, the perceptual
prior thus includes direct information about the
percept/decision/response concerning the first lattice.
We assume the precision of the single-peaked vonMises
distribution part of the perceptual prior (i.e., κpercL1) to
be smaller than the stimulus or sensory precision for the
second lattice (given that the percept for the first lattice
is not visually present, this creates the possibility for
more noise than for the second lattice, which is visually
present).

p(θL2perc) ∝ p(θL1) · (1 − wpercL1) + semicircular von

Mises( ˆθL1, κpercL1) · wpercL1 (8)

Likelihood distribution for the second lattice
Given that the second dot lattice is hexagonal, it

has three equally dominant orientations. Therefore,
we assume the observer’s representation of the second
lattice to be a combination of the sensory measurements
for the 0°, 60°, and 120° orientations, with equal weight
for all three sensory measurements. To arrive at a
triple-peaked likelihood (cf. Figure 4c), we combine the
likelihoods for all three sensory measurements (i.e., the
sensory measurements for the relative 0°, 60°, and 120°
orientation) with equal weights:

p(mL2|θ ) ∝ p(m0|θ ) · 1
3

+ p(m60|θ ) · 1
3

+ p(m120|θ ) · 1
3
,

(9)

with p(m0|θ ), p(m60|θ ), and p(m120|θ ) being the single-
peaked likelihoods of the sensory measurements for the
relative 0°, 60°, and 120° orientation, respectively. As for
the first lattice, each sensory measurement m is modeled

as in (4), using the cumulative distribution of the
stimulus prior (7) to determine the stimulus-to-sensory
mapping. For each stimulus orientation θ i, p(m|θ i)
can be computed according to (4) and the specific
noise distributions. Each single-peaked likelihood
function is generated with the same level of stimulus
noise (inversely represented in the model as stimulus
precision: κstimL2) and the same level of sensory noise
(included in the model as sensory precision: κsensL2).
As described earlier in this article, the external stimulus
noise (symmetric in stimulus space) is assumed to follow
a von Mises (i.e., circular normal) distribution on the
180° (i.e., half-circular) orientation space with its mean
at the actual stimulus orientation value in question
and its precision being equal to κstimL2. The internal
sensory noise (symmetric in sensory space) is expected
to follow a von Mises (i.e., circular normal) distribution
on the 180° (i.e., half-circular) orientation space with
its mean at the expected sensory measurement for the
actual stimulus orientation value in question (based
on the stimulus-to-sensory mapping, derived from the
cumulative density function for the prior distribution)
and its precision being equal to κsensL2. Given that
the second lattice was presented more briefly than the
first lattice (300 ms vs. 800 ms), we assume the sensory
precision for the second lattice to be lower than the
precision for the first lattice. For implementational
details on the computation of the likelihood, we refer
the reader to the model code, which is publicly available
on OSF.

Posterior distribution and percept for the second lattice
To arrive at the posterior probability distribution

for the perceived orientation of the second lattice (cf.
Figure 4d), the perceptual prior distribution and the
likelihood distribution are combined:

p(θ |mL2) ∝ p(θL2perc) · p(mL2|θ ). (10)

From this posterior distribution, the probability of
perceiving the relative 0°, 60°, or 120° orientations can
directly be deduced, for example, for the relative 0°
orientation:

p( ˆθL2 = 0◦) = p(θ = 0◦|mL2)
p(θ = 0◦|mL2) + p(θ = 60◦|mL2)

+ p(θ = 120◦|mL2)

. (11)

In case one wants to derive perceptual responses, one
of the three dominant orientations can be sampled with
the relative posterior probability at these orientations.
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Free parameters in efficient Bayesian observer
model

cstim influences the strength of the effect of AR
on the relative difference in height between the 0°
and 90° peaks in the likelihood distribution for the
first lattice. When cstim is increased, AR more heavily
influences the difference in height for the 0° and the
90° peak in the likelihood distribution for the first
lattice.

κstimL1 (i.e., stimulus precision for the first rectangular
lattice) and κstimL2 (i.e., stimulus precision for the
second hexagonal lattice) influence the general precision
of the likelihood peaks for the first and the second
lattice, respectively. Stimulus precision does not alter the
asymmetry of the likelihood distributions in stimulus
space. When κstim is decreased, lower stimulus precision
or, in other words, more external stimulus noise, is
present.

κsensL1 (i.e., sensory precision for the first lattice) and
κsensL2 (i.e., sensory precision for the second lattice)
influence the asymmetry of the likelihood distributions
for the first and the second lattice (in stimulus space),
respectively. When κsens is decreased, lower sensory
precision or thus more internal sensory noise is present.
Given the difference in presentation time (i.e., 800 ms
for the first and 300 ms for the second lattice), we
assume κsensL1 to be higher than κsensL2.

wstimL1 (i.e., the weight of the posterior of the first
lattice on the stimulus prior for the second lattice)
determines the relative influence of the short-term effect
of the first lattice on the stimulus prior for the second
lattice compared to the influence of the long-term
natural stimulus distribution.

wpercL1 (i.e., the weight of the percept of the first
lattice on the perceptual prior for the second lattice)
determines the relative influence of the percept of the
first lattice on the perceptual prior for the second lattice
compared to a uniform distribution.

κpercL1 (i.e., the precision of the peak for the percept
of the first lattice) reflects the precision of the von
Mises distribution used in determining the perceptual
prior for the second lattice.

Model calculations and analyses

To investigate the effect of different model choices
and parameters, we calculated the probabilities of
perceiving the relative 0° orientation in the first and the
second lattice for different versions of the general model
described above. For each version of the model that we
investigated, we calculated the probabilities for each
possible trial, with the trial defined by a combination of
the AR of the first lattice (i.e., 1.3−1, 1.2−1, 1.1−1, 1.0,
1.1, 1.2, and 1.3), and the percept of the first lattice (i.e.,

relative 0° or relative 90° orientation). When using a
non-uniform natural stimulus distribution in the prior
for the first lattice, we also calculated the probabilities
for each absolute lattice orientation (i.e., from 1° to
180° in steps of 1°).3

Our first aim was to find a model and parameter
combination that matched well with the average
behavioral results found in Van Geert et al. (2022). Once
this model version and parameter values was found, we
manipulated each of the model parameters separately
to investigate their effect on the expected probabilities
of perceiving the relative 0° orientation in the first and
the second lattice.

Our second aim was to introduce variation in some of
the parameter values, to approximate the interindividual
variation in effect size and direction found in the
behavioral data for the dot lattices paradigm (Van Geert
et al., 2022). We varied (a) the constant influencing the
relation between the AR and differential height of the
0° and 90° peak in the likelihood for the first lattice
(cstim), (b) the weight of the posterior of the first lattice
on the stimulus prior for the second lattice (wstimL1),
and (c) the weight of the percept of the first lattice on
the perceptual prior for the second lattice (wpercL1).
To investigate whether we could reproduce the strong
positive correlation between individuals’ hysteresis and
adaptation effects found in Van Geert et al. (2022),
we drew 75 individual parameter combinations for
cstim, wstimL1, and wpercL1 from a truncated multivariate
normal distribution with means of 5, 6.5, and 5, a
lower boundary of zero for all three parameters, an
upper boundary of 10 for wstimL1 and wpercL1, and the
following variance-covariance matrix:[25 0 0

0 9 8.95
0 8.95 9

]
.

The wstimL1 and wpercL1 parameters were then rescaled
with a maximum of one instead of ten to match the
zero-to-one range. We then calculated the probabilities
of perceiving the relative 0° orientation in the first and
the second lattice for all 75 parameter combinations and
calculated the expected frequencies of each response
given those probabilities.

To compare the variation in hysteresis and adaptation
effects in the models to the variation in the behavioral
results from Van Geert et al. (2022), and also to
compare the observed correlation between individual
hysteresis and adaptation effects, we conducted similar
Bayesian analyses as in Van Geert et al. (2022) to
the simulated data. More specifically, we estimated
individual hysteresis and adaptation effects using
a Bayesian multilevel binomial regression model
predicting the percept of the second lattice, with the
AR of the first lattice (AR) and the percept of the first
lattice (R10) as fixed and random effects. To estimate the
direct proximity effect, we used a Bayesian multilevel
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binomial regression model predicting the percept of the
first lattice, with the AR of the first lattice (AR) as fixed
and random effect. For more details on these Bayesian
analyses, please consult the Supplementary Material as
well as Van Geert et al. (2022).

Results

Approximation of average attractive and
repulsive temporal context effects

After exploration of several parameter combinations,
we were able to approximate the average behavioral
results of Van Geert et al. (2022) with both a uniform
(cf. Figure 5a) or a natural stimulus distribution
prior for the first lattice (cf. Supplementary Figure 3)
and the following parameter values: cstim = 5,
κstimL1 = 20, κsensL1 = 20, κstimL2 = 20, κsensL2
= 18, κpercL1 = 10, wstimL1 = 0.60, and wpercL1 =
0.50. Whether a uniform prior distribution or a
natural stimulus distribution was used as prior for
the first lattice did not visibly influence the results.
Given the considerable number of parameters,
other parameter combinations could give results

similar to the one proposed here. Therefore, we
provide an online Shiny application in which the
user can play with the different parameter values
to test their effects, both on the trial and on the
experiment level (https://elinevg.shinyapps.io/
dotlatticesimulations/).

A version of the model using the stimulus prior in
combination with the likelihood for the second lattice
instead of the perceptual prior was able to predict
a repulsive context effect of the previous stimulus
evidence, but not the attractive effect of the previous
percept (cf. Figure 5b). Although the predicted repulsive
effect is only weak when using the same weights as
in Figure 5a (cf. Supplementary Figure 4), this is a
consequence of the parameter settings: as in this version
of the model, the same distribution is used in the prior
(resulting in prior attraction) and in the likelihood
(resulting in likelihood repulsion), and wstimL1 and
wpercL1 are almost equal, attractive and repulsive effects
largely cancel each other out. If wstimL1 is increased and
wpercL1 is decreased, a stronger repulsive effect is visible
(cf. Figure 5b).

Is efficient encoding necessary to reproduce the
behavioral results? A version of the model without
efficient encoding was able to predict an attractive
context effect of the previous percept4 (as the perceptual
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Figure 5. Visualization of the logit probability to perceive the relative 0° orientation in the first lattice and the second lattice, based on
(a) an efficient Bayesian observer model with a flat prior distribution for the first lattice and the following parameters: cstim = 5, κstimL1
= 20, κsensL1 = 20, κstimL2 = 20, κsensL2 = 18, κpercL1 = 10, wstimL1 = 0.60, and wpercL1 = 0.50, (b) the same model as in (a), but using a
stimulus prior rather than a perceptual prior for the second lattice and with wstimL1 = 0.60, and wpercL1 = 0, and (c) the same model as
in (a), but without efficient encoding. The yellow dots indicate the expected probabilities based on the model. In (b), the dark and
light yellow dots lay on top of each other. The behavioral results and the estimated effects based on the behavioral results of Van
Geert et al. (2022), averaged across participants, are indicated in dark grey for r1 = 0° and light grey for r1 = 90°.
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prior was still combined with the likelihood for the
second lattice), but not the repulsive effect of the
previous stimulus evidence, as that effect depends on
the impact of the first lattice on the stimulus-to-sensory
mapping and the likelihood of the second lattice (cf.
Figure 5c).

Effects of free parameters on attractive and
repulsive temporal context effects

Here we start from the final efficient Bayesian
observer model with a uniform prior for the first lattice
and the parameters specified above and explore the
effect of each parameter separately on the expected
probabilities of perceiving the relative 0° orientation in
the first and the second lattice. Under these settings,
cstim is the only parameter influencing the size of
the direct proximity effect (i.e., the effect of the AR
on the percept of the first lattice; cf. Figure 6a).
Through its influence on the likelihood for the first
lattice, cstim also indirectly influences the size of the
repulsive context effect of the AR on the second lattice
(cf. Figure 7a).

Because κstimL1 only decreases overall precision of
the likelihood distribution for the first lattice (which
increases the influence of the prior on the posterior)
and a uniform prior distribution is used, a change
in κstimL1 does not have an influence on the relative
posterior probabilities for the 0° and 90° orientation in
the first lattice. Therefore, κstimL1 does not influence the
size of the proximity effect in case a uniform prior is
used for the first lattice (cf. Figure 6b). In the expected
probabilities for the second lattice, a higher stimulus
precision for the first lattice (i.e., κstimL1) results in
slightly lower probabilities of perceiving the relative 0°
orientation in the second lattice, especially for lower
ARs (i.e.., in favor of the relative 0° orientation). In
other words, a higher κstimL1 thus results in a slightly
stronger repulsive effect of the previous stimulus
evidence (cf. Figure 7b).

Given a uniform prior distribution, also κsensL1 does
not influence the relative posterior probabilities for the
0° and 90° orientation in the first lattice. In other words,
κsensL1 does not influence the size of the proximity effect
in case a uniform prior is used for the first lattice (cf.
Figure 6c). In the expected probabilities for the second
lattice, a higher sensory precision for the first lattice
(i.e., κstimL1) results in a slightly stronger repulsive effect
of the previous stimulus evidence (cf. Figure 7c).

As can be seen in Figure 7d, increasing κstimL2 slightly
increases the expected probabilities for perceiving the
0° orientation in the second lattice overall, but more
so for lower ARs. Hence, a higher κstimL2 results in a
slightly shallower adaptation effect (i.e., repulsive effect
of the previous stimulus evidence). Increasing κsensL2
leads to the opposite effect (cf. Figure 7e): the higher
the sensory precision for the second lattice, the stronger
the adaptation effect.

The more precise the peak in the perceptual prior
for the second lattice, the higher the overall probability
of perceiving the relative 0° orientation in the second
lattice. Although the effect of κpercL1 is present
regardless of the percept for the first lattice being the
relative 0° or the relative 90° orientation, the effect
of κpercL1 is larger for conditions in which the relative
0° orientation was perceived in the first lattice (cf.
Figure 7f).

Increasing the weight of the previous stimulus
evidence compared to the long-term uniform stimulus
distribution (i.e., wstimL1) increases the size of the
adaptation effect (cf. Figure 7g). Increasing the weight
of the previous percept compared to the long-term
uniform perceptual history (i.e., wpercL1) increases the
size of the hysteresis effect (cf. Figure 7h).

The effects of different parameter combinations can
be further explored in the online Shiny application
that we provide (https://elinevg.shinyapps.io/
dotlatticesimulations/). In this application, the user
can play with the different parameter values and
combinations to test their effects, both on the trial and
on the experiment level.
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Figure 6. Effects of parameter variations on the logit probability of perceiving the relative 0° orientation in the first lattice, for an
efficient Bayesian observer model with a uniform prior for the first lattice and baseline parameter values: cstim = 5, κstimL1 = 20, and
κsensL1 = 20. Under these settings, κstimL1 and κsensL1 do not influence the size of the direct proximity effect (i.e., the effect of the AR
on the percept of the first lattice).
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Figure 7. Effects of parameter variations on the logit probability of perceiving the relative 0° orientation in the second lattice, for an
efficient Bayesian observer model with a uniform prior for the first lattice and baseline parameter values: cstim = 5, κstimL1 = 20,
κsensL1 = 20, κstimL2 = 20, κsensL2 = 18, κpercL1 = 10, wstimL1 = 0.60, and wpercL1 = 0.50.

Interindividual variation in proximity,
hysteresis, and adaptation

When introducing interindividual variation in
the parameter values for cstim, wstimL1, and wpercL1,
interindividual variation in proximity, hysteresis, and
adaptation effects results. With the currently used
parameter combinations, the size of the hysteresis
and adaptation effects varied less in the simulation
data than in the empirical data, but the simulated
variation is plausible given the empirical data (cf.
Figure 8 for average results and Figure 9 for individual
simulation results). Furthermore, the same relation
between hysteresis and adaptation effects is visible
as in the empirical data: By generating wstimL1 and
wpercL1 in a positively correlated manner, we were
able to reproduce the empirically found positive
correlation between individuals’ attractive and repulsive
temporal context effects (cf. Figure 10b). Different
from the empirical results in Van Geert et al. (2022),
the adaptation effect showed a strong negative

correlation with the direct proximity effect in the
simulation results and the hysteresis effect showed
no correlation with the direct proximity effect (cf.
Supplementary Figure 7).

Discussion and conclusions

We tested whether the observed attractive and
repulsive temporal context effects could be explained by
an efficient Bayesian observer model (Wei & Stocker,
2015), which has previously been successfully applied to
many different study designs involving non-ambiguous
stimulus perception (e.g., Fritsche et al., 2020; Langlois
et al., 2021; Wei & Stocker, 2015). The efficient Bayesian
observer model assumes variable encoding precision of
orientations in line with their frequency of occurrence
(i.e., efficient encoding) and takes the dissimilarity
between stimulus space and sensory space into account,
which leads to asymmetric likelihood distributions as a
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Figure 8. (a) Mean empirical logit probability of perceiving the relative 0° orientation in the first and the second lattice dependent on
the AR. The probability of responding 0° to the first lattice decreases with the AR (|a|/|b|). The value of the AR increases with
increasing distance in the 0°-orientation, leading to more 90° responses. The probability of responding 0° to the second lattice
increases with the AR (|a|/|b|; i.e., adaptation effect), and increases when the first stimulus was perceived as 0° rather than 90° (i.e.,
hysteresis effect). (b) Mean simulated logit probability of perceiving the relative 0° orientation in the first and the second lattice
dependent on the AR. Note. Dots indicate mean values. In addition, mean posterior predictions and their 95% highest density
continuous intervals are shown.

result of uncertainty induced by internal sensory noise,
and consequently the possibility for “anti-Bayesian”
percepts biased away from the observer’s prior beliefs.

A hierarchical efficient Bayesian observer model
including both a stimulus and a perceptual level
was needed to explain the co-occurrence of both
attractive and repulsive temporal context effects. The
AR of the first lattice (i.e., the previous stimulus
evidence) affected the percept of the second lattice
via the stimulus-to-sensory mapping (i.e., efficient
encoding) and the likelihood (i.e., likelihood repulsion)
of the second lattice. The previous percept affected
the perceptual prior for the second lattice and as a
consequence the posterior probability of perceiving
the relative 0° orientation in the second lattice (i.e.,
prior attraction). In other words, efficient encoding and
likelihood repulsion on the stimulus level could explain

the repulsive context effect, whereas perceptual prior
attraction could explain the attractive temporal context
effect when perceiving multistable dot lattices. This
reasoning was confirmed based on simulations from
model variants without efficient coding (showing only
hysteresis) and without a perceptual prior (showing
only adaptation). The conclusion that a hierarchical
model including both a stimulus and a perceptual level
is needed, is in line with Mao and Stocker (2024), who
suggested the need to take higher-level representations
into account to adequately model human subjects’
orientation percepts.

Not only the mean attractive and repulsive temporal
context effects present in Van Geert et al. (2022) could
be reproduced using a hierarchical efficient Bayesian
observer model, also plausible variation in effect size
and direction could be derived by varying (a) the
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Figure 9. (a) Mean simulated individual responses to the first stimulus dependent on the AR (logit). The probability of responding 0°
to the first stimulus decreases with the AR (|a|/|b|). The value of the AR increases with increasing distance in the 0°-orientation,
leading to more 90° responses. Dots indicate observed values. In addition, mean posterior predictions and their 95% highest density

→
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←
continuous intervals are shown. (b) Mean simulated individual responses to the second stimulus dependent on the AR (logit). The
probability of responding 0° to the second stimulus increases with the AR (|a|/|b|; i.e., adaptation effect), and increases when the
first stimulus was perceived as 0° rather than 90° (i.e., hysteresis effect). Dots indicate observed values. In addition, mean posterior
predictions and their 95% highest density continuous intervals are shown. Note. Labels indicate parameter values for cstim, wstimL1,
and wpercL1 per simulated participant, respectively.
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Figure 10. Correlation between individual slopes for the effect of the AR and perceived L1 orientation on perceiving the 0° orientation
in L2, for (a) the empirical data collected in Van Geert et al. (2022) and (b) the simulated data. Mean and 80% highest density
continuous intervals (HDCI) are shown. The dashed lines indicate a slope of zero. The black and yellow lines give examples of plausible
correlation estimates.

constant influencing the relation between the AR
and differential height of the 0° and 90° peak in the
likelihood for the first lattice (cstim), (b) the weight of
the posterior of the first lattice on the stimulus prior
for the second lattice (wstimL1), and (c) the weight
of the percept of the first lattice on the perceptual
prior for the second lattice (wpercL1). Furthermore, the
hierarchical efficient Bayesian observer model could
reproduce the empirically observed strong positive
correlation between individuals’ attractive and repulsive
effects (Van Geert et al., 2022), by assuming a positive
correlation between temporal integration constants
at the stimulus and the perceptual level. That is,
individuals who weight the previous stimulus evidence
more highly in relation to the long-term stimulus
context will also weight the previous percept more
highly in relation to the long-term perceptual context
than individuals who weight the previous stimulus
evidence less highly. Assuming separate but correlated

temporal integration constants at the stimulus and the
perceptual level is not implausible in our opinion. For
instance, Fritsche et al. (2020) found better performance
for a model with different integration time constants
for prior and likelihood than for a model that used the
same parameters for both. Different from the successful
reproduction of the high positive correlation between
attractive and repulsive temporal context effects, the
correlations between the temporal context effects and
the direct proximity effect did not match those observed
in the empirical data. Follow-up research may aim
to find parameter combinations that provide a closer
match to those aspects of the empirical data.

Whereas earlier models induced a direct effect
of the previous stimulus evidence on the likelihood
distribution for the second lattice (Schwiedrzik et al.,
2014), or posited a persistent bias for an absolute
orientation but did not model the origin of the bias
(Gepshtein & Kubovy, 2005), the current efficient

Downloaded from abstracts.iovs.org on 04/20/2024



Journal of Vision (2024) 24(4):18, 1–20 Van Geert, Ivančir, & Wagemans 18

Bayesian observer model provides a more complete
process model of how previous percept and stimulus
evidence can influencemultistable dot lattice perception.
We consider changes in the frequency of occurrence
(in this case in the short term) and consequently in
the prior distribution and the stimulus-to-sensory
mapping a conceptually plausible explanation for
the co-occurrence of separate but related short-term
attractive and repulsive temporal context effects. The
currently proposed model thus integrates explanations
for both mechanisms in one coherent (hierarchical)
theory, which was not the case in the earlier models of
the dot lattice paradigm (Gepshtein & Kubovy, 2005;
Schwiedrzik et al., 2014). Assuming separate but related
processes underlying both context effects present at
multiple hierarchical levels (i.e., likelihood repulsion on
the stimulus level and prior attraction on the perceptual
level, related through their dependence on the posterior
for the first lattice), provides an intermediate position,
in between researchers positing one single mechanism
underlying both effects and researchers confirming
differences in the characteristics of both effects.
Furthermore, the idea of separate but related processes
inherent in the efficient Bayesian observer model is
highly compatible with the empirically observed high
correlation between individuals’ attractive and repulsive
temporal context effects as observed in Van Geert et al.
(2022).

It is highly likely that our visual system takes
more previous stimulus evidence or percepts into
account than only one stimulus back. Another possible
follow-up is, therefore, to take changes throughout
the entire experiment into account when modeling
the behavioral data resulting from the multistable dot
lattice paradigm. However, the presence of a mask in
between trials makes modeling this process conceptually
more complex. Furthermore, when modeling the results
for the current paradigm, going only one trial back,
was enough to replicate the behavioral effects. It was
thus not necessary to go more than one trial back to
successfully account for the co-occurrence of both
effects.

The current computational model can serve to
inspire new experimentation. The model can generate
quantitative predictions that can be tested in new
experiments: for example, sensory noise can be
manipulated using exposure time or stimulus contrast,
the alignment of the dots in the lattice can be decreased
to lower stimulus precision, or a longer inter-stimulus
interval could be introduced to weaken the influence of
the first lattice. Also, the same modeling approach can
be adapted to other tasks measuring temporal context
effects with different multistable stimuli.

To conclude, a hierarchical efficient Bayesian
observer model including both a stimulus and a
perceptual level can explain repulsive temporal context
effects in multistable dot lattice perception via efficient

encoding and likelihood repulsion, and attractive effects
via perceptual prior attraction. This conclusion is in
line with the conclusion of Mao and Stocker (2024),
who suggested the need for considering the complex
hierarchical structure of the brain, by also taking the
higher-level representation into account to adequately
model human subjects’ response behavior.

Keywords: efficient coding, hysteresis, adaptation,
individual differences, perceptual organization,
multistable perception, serial dependencies, context
effects, attraction, repulsion
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Footnotes
1For an overview of all R packages used, see the Supplementary Material.
2In most figures, we show the results based on internal sensory noise
distributions with their means at the expected sensory measurements (i.e.,
the relative 0° and relative 90° orientations). However, we also simulated
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a model with sensory measurements sampled from the probability
distribution of sensory measurements given the actual stimulus orientation
(cf. Supplementary Figure 5).
3When using a uniform prior distribution for the first lattice, the absolute
lattice orientation does not influence the posterior probabilities for the
first or the second lattice.
4When the participant perceived the 90° orientation in the first lattice, no
attractive context effect can be present as the 90° orientation of the first
lattice is never close to one of the three orientations present in the second
lattice (0°, 60°, and 120°). Therefore, hysteresis, i.e., an attractive context
effect or having the same percept in both lattices, can only occur when the
previous percept was the 0° orientation and the probability of perceiving
the 0° orientation in the second lattice is at chance level when the previous
percept was the 90° orientation.
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Untangling perceptualmemory: Hysteresis
and adaptationmap into separate cortical
networks. Cerebral Cortex, 24(5), 1152–1164,
https://doi.org/10.1093/cercor/bhs396.

Schwiedrzik, C. M., Sudmann, S. S., Thesen, T., Wang,
X., Groppe, D. M., Mégevand, P., . . . Melloni,
L. (2018). Medial prefrontal cortex supports
perceptualmemory. Current Biology, 28(18),
R1094–R1095, https://doi.org/10.1016/j.cub.2018.
07.066.

Snyder, J. S., Schwiedrzik, C. M., Vitela, A.
D., & Melloni, L. (2015). How previous
experience shapes perception in different
sensorymodalities.Frontiers inHumanNeuroscience,
9, https://doi.org/10.3389/fnhum.2015.00594.

Tomassini, A., Morgan, M. J., & Solomon, J. A.
(2010). Orientation uncertainty reduces perceived
obliquity. Vision Research, 50(5), 541–547,
https://doi.org/10.1016/j.visres.2009.12.005.

Van Geert, E., Moors, P., Haaf, J., & Wagemans, J.
(2022). Same stimulus, same temporal context,
different percept? Individual differences in hysteresis
and adaptation when perceiving multistable dot
lattices. I-Perception, 13(4), 20416695221109300,
https://doi.org/10.1177/20416695221109300.

Wei, X.-X., & Stocker, A. A. (2015). A Bayesian
observermodel constrained by efficient
coding can explain “anti-Bayesian” percepts.
Nature Neuroscience, 18(10), 1509–1517,
https://doi.org/10.1038/nn.4105.

Downloaded from abstracts.iovs.org on 04/20/2024

https://doi.org/10.1093/cercor/bhs396
https://doi.org/10.1016/j.cub.2018.07.066
https://doi.org/10.3389/fnhum.2015.00594
https://doi.org/10.1016/j.visres.2009.12.005
https://doi.org/10.1177/20416695221109300
https://doi.org/10.1038/nn.4105

