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Purpose: Establishing a development environment for machine learning is difficult for
medical researchers because learning to code is a major barrier. This study aimed to
improve the accuracy of a postoperative vault value prediction model for implantable
collamer lens (ICL) sizing using machine learning without coding experience.

Methods: We used Orange data mining, a recently developed open-source, code-free
machine learning tool. This study included eye-pair data from 294 patients from the
B&VIIT Eye Center and 26 patients from Kim’s Eye Hospital. The model was developed
using OCULUS Pentacam data from the B&VIIT Eye Center and was internally evaluated
through 10-fold cross-validation. External validation was performed using data from
Kim’s Eye Hospital.

Results: The machine learning model was successfully trained using the data collected
without coding. The random forest showedmean absolute errors of 124.8 μm and 152.4
μm for the internal 10-fold cross-validation and the external validation, respectively.
For high vault prediction (>750 μm), the random forest showed areas under the curve
of 0.725 and 0.760 for the internal and external validation datasets, respectively. The
developed model performed better than the classic statistical regression models and
the Google no-code platform.

Conclusions: Applying a no-code machine learning tool to our ICL implantation
datasets showed a more accurate prediction of the postoperative vault than the classic
regression and Google no-code models.

Translational Relevance: Because of significant bias in measurements and surgery
between clinics, the no-code development of a customized machine learning
nomogram will improve the accuracy of ICL implantation.

Introduction

Due to the recent increase in myopia, the demand
for vision correction surgery is increasing worldwide.1
Posterior chamber phakic intraocular lens implanta-
tion (IOL) for the correction of myopia and astigma-
tism has proven to be accurate and safe. To maintain
the IOL without complications, the surgeon must
implant an IOL of optimal size for the patient’s eye.2

Since the introduction of an implantable collamer lens
(ICL) with a central hole, the safety of posterior lens
implantation has increased.3 However, implantation of
an IOL that is large for a patient’s eye increases the
risk of intraocular pressure due to a high postopera-
tive vault level, and there is a possibility of endothe-
lial cell damage due to iridocorneal touching.4 It has
been reported that a postoperative vault value that is
too low can put stress on the crystalline lens of the
anterior capsule and is related to axial rotation of the

Copyright 2024 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded from abstracts.iovs.org on 04/25/2024

mailto:eyetaekeunyoo@gmail.com
mailto:kmkoh@kimeye.com
https://doi.org/10.1167/tvst.13.4.4
http://creativecommons.org/licenses/by-nc-nd/4.0/


Code-Free Machine Learning for ICL TVST | April 2024 | Vol. 13 | No. 4 | Article 4 | 2

astigmatism correction IOL.5 Therefore, predicting the
vault level after surgery and determining the optimal
lens size are important.

Measuring the space behind the iris where the
IOL is suitable for phakic IOL implantation is diffi-
cult. Attempts have been made to predict IOL size
by directly measuring the space inside the eye using
ultrasound biomicroscopy (UBM) or anterior segment
optical coherence tomography (AS-OCT); however,
measurement accuracy is limited. Therefore, attempts
to predict the postoperative vault value and IOL size
by analyzing various biometric eye data have become
a major trend in this field. It is now possible to
predict vaults by analyzing anterior segment measure-
ment data using machine learning. However, variations
in these data occur due to measurement deviations
by anterior segment imaging equipment, illuminance
of the measurement space, and differences in surgical
techniques. The differences between these institutions
and surgeons are difficult to measure if there are insuf-
ficient data. Therefore, developing a general IOL sizing
prediction model that can be applied to all ICL surgery
centers is challenging. Instead, it could be advanta-
geous for each center to develop postoperative vault
value prediction and IOL sizing models for prediction
accuracy using their own data. However, difficulties in
data analysis andmachine learningmodel development
make it difficult for ophthalmologists and researchers
to develop their own customized models.

In previous studies, our research group has shown
that machine learning can be used to predict the
postoperative vault and improve ICL sizing accuracy
by analyzing anterior segment data from AS-OCT
devices.2,6,7 However, the previously proposedmachine
learning methods cannot be used with OCULUS
Pentacam equipment that measures the same anterior
segment. Models developed using single-center data
cannot be tuned to the biases that occur at individ-
ual institutions. Additionally, several external valida-
tion studies have confirmed that the accuracy of vault
prediction algorithms can be reduced in other institu-
tions.8,9 Accordingly, there is a need to develop individ-
ualized machine learning models for each ophthalmol-
ogy clinic.

Recent developments in artificial intelligence (AI)
have led to advancements in data analysis in various
fields. In the medical field, it has become possible to
use machine learning to analyze complex patient data
to gain new insights and develop predictive models.10
However, setting up a development environment to
use machine learning can be difficult for medical
researchers because they need to learn programming
languages such as Python to build a machine learn-
ing model without errors, which can be difficult for

researchers who are focused onmedical data analysis.11
Recently, studies have reported that it is possible to
build machine learning models without coding using
cloud services provided by platform companies such as
Google AutoML.12,13 However, the development tools
provided by these platforms work on a console in a
cloud environment, and researchers can only analyze
the desired model if they have sufficient knowledge of
the server and machine learning development.

To overcome these difficulties, this study developed
a machine learning model using Orange, a recently
developed open-source machine learning tool. Orange
provides machine learning development experience
without coding and enables easy-to-understand data
analysis through visualization.14 In this study, we devel-
oped a machine learning model using data from two
centers, performed validation, and built a code-free
vault prediction and lens sizing model for phakic IOL
implantation. Developing a machine learning model to
predict the vault allows the surgeon to determine which
vault is expected for each lens size and which lens to use
for surgery (Supplementary Fig. S1).

Methods

This study aimed to predict the postoperative vault
value when one of the four available ICL sizes (12.1,
12.6, 13.2, and 13.7 mm) was implanted (Fig. 1). Based
on this, we attempted to predict what size lens should be
inserted to reach the optimal vault value (500 μm) after
surgery. This study performed a retrospective chart
review that included patients who had undergone ICL
surgery (EVO-ICL V5; Staar Surgical, Monrovia, CA)
for vision correction. We collected preoperative and
postoperative biometric data from the B&VIIT Eye
Center (Seoul, South Korea) from February 2021 to
June 2022 and from Kim’s Eye Hospital (Seoul, South
Korea) from July 2021 to January 2023. The study
adhered to the tenets of the Declaration of Helsinki.
The study protocol was approved by the Institutional
Review Boards of the Korean National Institute for
Bioethics Policy (No. 2022-1011-002) and Kim’s Eye
Hospital. All personally identifiable information was
excluded from this study.

Data Collection

Training and internal validation were performed
using data from the B&V IIT Eye Center. Exter-
nal validation was performed using data from the
Kim’s Eye Hospital. Both medical institutions used the
same equipment (Pentacam HR; OCULUS, Wetzlar,
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Figure 1. Schematic diagramof the outline of this study. (A) Status after ICL implantation and definition of postoperative vault. (B) Purpose
of this study.

Germany) to evaluate the anterior segment; hence, we
developed a prediction model using the collected data.
The inclusion criteria were as follows: age between 18
and 40 years with myopia or astigmatism, availabil-
ity of preoperative scanning results using the Penta-
cam HR, and vault performed at 6 months postoper-
atively. Patients with retinal abnormalities, glaucoma,
corneal opacity, or history of ophthalmic surgery were
excluded.

The preoperative spherical equivalent (SE) was
measured using manifest refraction. Ophthalmol-
ogists also evaluated the keratometry and preop-
erative white-to-white (WTW) distances. Trained
observers performed the Pentacam examinations. The
built-in three-dimensional analysis program allows
for automatic calculation of measurements based
on structural outlines. The Pentacam automatically
measures anterior chamber depth (ACD), pupil diame-
ter, corneal thickness, anterior chamber angle, corneal
volume, anterior chamber volume, and corneal refrac-
tive indexes of back and front surfaces. Six months
postoperatively, vault values were manually measured
using AS-OCT (CASIA2; Tomey, Nagoya, Japan). The
postoperative vault was defined as the closest distance
between the lens and IOL on the central axis.

We considered a postoperative vault of 500 μm as
the best clinical outcome for choosing the optimal ICL
size. In both centers, the selection of ICL size was based
on clinical decisions obtained from a full evaluation
by board-certified ophthalmologists. Before surgery,
ophthalmologists determined the size of the IOL based
on a nomogram developed in-house2 and the manufac-

turer’s nomogram at the B&V IIT Eye Center and
Kim’s Eye Hospital. All phakic IOL implantation
procedures were performed using the standard method
guided by the manufacturer. The IOL was implanted
in the posterior chamber through a 3.0-mm-sized clear
corneal incision.

Algorithm Development

We used preoperative biometric measurements,
anterior segment variables extracted from the Penta-
cam, and IOL size as input variables to predict
the vault values 6 months after surgery. The input
variables included SE, mean keratometry, WTW
distance, ACD, pupil diameter, anterior chamber angle,
anterior chamber volume, corneal volume, keratom-
etry maximum value, thinnest pachy (corneal thick-
ness), corneal back radius mean, corneal back eccen-
tricity, corneal back astigmatism, corneal front radius
mean, corneal front eccentricity, corneal front astig-
matism, and ICL size. In real-world settings, input
values are used without normalization or preprocess-
ing. Themodel, developed using data from the B&VIIT
Eye Center, was internally evaluated through 10-fold
cross-validation and externally validated using data
from Kim’s Eye Hospital. Postoperative vault predic-
tion models include random forest,15 gradient boost-
ing, AdaBoost, decision tree, linear regression, k-
nearest neighbor (KNN), and artificial neural networks
(ANNs).

Additionally, binary classification models were
developed to predict postoperative high-vault (>750
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Figure 2. Component architecture for the postoperative vault prediction using own data for no-code machine learning development.

μm) and low-vault (<250 μm) conditions with the
same input variables.Machine learning algorithms that
predicted high and low vaults were labeled according to
the threshold values of the vault and trained accord-
ingly. Classification models were constructed indepen-
dently of vault prediction regression models. The
binary classification models included random forest,
gradient boosting, AdaBoost, logistic regression, and
KNN. To determine the optimal hyperparameters for
each machine learning algorithm, we adopted a grid
search (Cartesian method), in which a range of hyper-
parameters (e.g., the number of trees and attributes in a
random forest) were tested via 10-fold cross-validation.

We also evaluated the accuracy of ICL size selection
based on the developed vault prediction models. The
vault was predicted for each ICL size, and the size with
the predicted postoperative vault value closest to 500
μm was selected as the final model result. In this exper-
iment, cases where the achieved vault was too large
(>750 μm) or too small (<250 μm) were assumed to
be cases where the wrong ICL size was selected and the
label was contaminated, and they were removed from
this classification problem.

To develop machine learning models, we used
Orange data mining version 3.36.1 (Bioinformatics
Laboratory, University of Ljubljana, Ljubljana, Slove-
nia).16 Orange is a comprehensive component-based
tool that allowsmachine learning development without
coding experience. Unlike similar services provided
by cloud companies, Orange mining software is open
source and distributed for free. Orange products can

be freely modified and distributed in relation to devel-
opment and documentation under a General Public
License, as published by the Free Software Foundation
(https://orangedatamining.com/license/). It provides
core machine learning algorithms such as basic
statistical regression analysis, ANNs, support vector
machines, random forest, and AdaBoost. The user
interface is designed to allow researchers to perform
model training and validation quickly and easily. The
hyperparameters for each algorithm were tuned using
the tuning option windows in Orange (Supplementary
Fig. S2). Data augmentation was not used because
Orange did not support augmentation functions.
Ophthalmologists (HC andDS) with no coding experi-
ence built a machine learning model by referring to the
basic Orange tutorial and from the collected data. The
configuration of the data management and machine
learning components is shown in Figure 2. Graphics
processing units (GPUs) were not used for training,
and a personal computer was used in the Windows
environment (Microsoft, Redmond,WA). For compar-
ison, a machine learning model was developed using
Google Vertex AI, which is a representative code-free
development tool (https://cloud.google.com/vertex-ai/
docs/training-overview#tabular).17

Statistical Analysis

The mean absolute error (MAE), median absolute
error (MedAE), root mean square error (RMSE), and
Pearson correlation coefficient between the achieved
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and predicted postoperative vault values were used to
evaluate the regression models. To evaluate the classifi-
cation models for the risk of high vault (>750 μm) and
low vault (<250 μm) values, we evaluated the predic-
tion results using the area under a receiver operating
characteristic (ROC) curve (AUC). The data distribu-
tion between the two centers was compared using the
χ2 test for categorical variables and t-test for contin-
uous variables. These tests were performed in a two-
sided manner, with a significance level of P < 0.05.

Results

The workflow for data management is shown
in Figure 3. This study included 588 eyes of 294
patients from the B&VIIT Eye Center and 52 eyes of
26 patients fromKim’s EyeHospital. The demographic
and clinical characteristics of the developed and exter-
nal validation datasets are presented in Table 1. Age
and sex distributions did not differ between the two
datasets. However, refractive power (SE) and mean
keratometry values differed significantly between the
two datasets. Very few patients used an ICL of 13.7
mm in either dataset. Compared with the B&VIIT Eye
Center, Kim’s Eye Hospital measured a larger mean
WTW distance and showed a pattern of using larger
IOL. The mean postoperative vault also showed a
significant difference with 541.2 μm at the B&VIIT Eye
Center and 720.4 μm at Kim’s Eye Hospital.

We uploaded the collected data and successfully
trained the machine learning models without coding.
The user interface for describing the results from the
Orange software is shown in Supplementary Figure S3.
All machine learning training was completed within
1 minute, and the trained model was exported exter-
nally as a pickle model file that could be imported into
Python code. For the postoperative vault prediction
model, the hyperparameters of each model were set as

follows. Random forest showed the best performance
when the number of trees was 1000 and the number
of attributes considered at each split was five. Gradi-
ent boosting showed the best performance when the
number of trees was 100 and the learning rate was 0.1.
In AdaBoost, the number of estimators was set to 100,
and the learning ratewas set to 0.1. In the case of KNN,
the highest performance was achieved when k was set
to 5. In the ANN, the optimal number of neurons
in the hidden layers was 1000 with the ReLU activa-
tion function andAdamoptimizer. In contrast, Google
Vertex AI did not require hyperparameter tuning but
we needed to set up a cloud environment for model
development, and the training took 1 hour and 50
minutes. The Google Vertex AI development process is
illustrated in Supplementary Figure S4.

As shown in Figure 4, the training data distribution
and trained model exploration were performed using
the Orange software. We used t-distributed stochas-
tic neighbor embedding (t-SNE) to visualize whether
the data distribution was predictable according to the
ICL size. Subsequently, we confirmed that the distri-
butions of the target variables and the postoperative
vault were unbiased. In addition, as guided by the
Orange tutorials, it was confirmed that the postop-
erative vault values showed the highest correlation
with ACD. Furthermore, it was possible to specifically
explore trained decision-tree-based models. Individual
classification criteria for the decision tree and shape of
each tree in the random forest were verified (Supple-
mentary Fig. S5). The t-SNE plot, labeled according
to the postoperative vault, is shown in Supplementary
Figure S6.

Table 2 shows the 10-fold cross-validation results
from the development set (B&VIIT Eye Center) and
validation results from the external validation set
(Kim’s Eye Hospital). The gradient boosting showed
the best MAE (118.9 μm) and RMSE (151.6 μm)
results in the internal 10-fold cross-validation. The
random forest showed the second highest performance

Figure 3. Data workflow for the model development and validation in this study.
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Table 1. Preoperative Demographics, Biometry Values, and Postoperative Vault Levels of the Study

Variable
B&VIIT Eye Center (n = 588
Eyes From 294 Patients)

Kim’s Eye Hospital (n = 52
Eyes From 26 Patients) P

Age (y), mean ± SD 26.3 ± 5.6 27.1 ± 6.1 0.467
Female:male, n 152:142 14:12 0.834
Spherical equivalent (D), mean ± SD −8.62 ± 2.25 −9.87 ± 2.14 <0.001
Mean keratometry (D), mean ± SD 43.87 ± 1.33 43.47 ± 1.67 0.042
White-to-white (mm), mean ± SD 11.70 ± 0.37 11.84 ± 0.37 0.009
Pentacam HR data, mean ± SD
Anterior chamber depth (mm) 3.28 ± 0.25 3.38 ± 0.24 0.006
Pupil diameter (mm) 3.07 ± 0.59 2.75 ± 0.53 0.002
Anterior chamber angle (degrees) 40.06 ± 6.67 41.72 ± 3.73 0.077
Anterior chamber volume (mm3) 190.84 ± 29.97 204.57 ± 30.74 0.002
Corneal volume (mm3) 60.71 ± 3.85 60.86 ± 3.44 0.786
Keratometry max (D) 45.38 ± 1.57 45.03 ± 1.98 0.132
Thinnest pachy (corneal thickness; μm) 530.03 ± 35.75 537.48 ± 34.73 0.149
Corneal back radius mean (mm) 6.31 ± 0.23 6.39 ± 0.28 0.019
Corneal back eccentricity 0.14 ± 0.31 0.25 ± 0.12 0.011
Corneal back astigmatism (D) 0.49 ± 0.15 0.51 ± 0.17 0.362
Corneal front radius mean (mm) 7.73 ± 0.23 7.81 ± 0.30 0.019
Corneal front eccentricity 0.27 ± 0.39 0.24 ± 0.10 0.581
Corneal front astigmatism (D) 2.10 ± 0.90 2.38 ± 0.87 0.032

Achieved ICL size, mean ± SD <0.001
12.1 mm (%) 235 (40.0) 2 (3.8)
12.6 mm (%) 302 (51.4) 18 (34.6)
13.2 mm (%) 47 (8.0) 30 (57.7)
13.7 mm (%) 4 (0.7) 2 (3.8)

Postoperative vaults (μm), mean ± SD 541.2 ± 186.1 780.4 ± 288.1 <0.001

Figure 4. Data and model visualization using the exploration functions provided by Orange. (A) The t-distributed stochastic neighbor
embedding (t-SNE) visualizing clustering of the entire data. (B) Postoperative vault distribution plot. (C) Scatterplot showing the relationship
between anterior chamber angle and postoperative vault.

(MAE of 124.8 μm and RMSE of 163.5 μm) in
internal validation but showed the best MAE (152.4
μm) and RMSE (189.7 μm) in the external valida-
tion set. Three machine learning methods—random
forest, gradient boosting, and AdaBoost—performed

better than linear regression, which is a classic statisti-
cal prediction model. In all algorithms, it was observed
that the performance decreased in the external valida-
tion compared with the internal validation. The devel-
oped random forest model exhibited a better MAE
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Figure 5. Postoperative vault prediction results. (A–C) Distribution of the achieved vault against the predicted vault from random forest
(A), gradient boosting (B), and linear regression (C). IOL size groups: blue, 12.1 mm; green, 12.6 mm; light green, 13.2 mm; yellow, 13.7 mm.
(D, E) Global feature importance calculated by random forest (D) and gradient boosting (E).

Figure 6. Distribution of the postoperative vault error of the developed random forest model between the predicted and achieved vault
values. (A) The internal validation result through 10-fold cross-validation. (B) The external validation result using Kim’s Eye Hospital data.

than Google Vertex AI for both internal and external
validations.

Figure 5 shows the distribution of the achieved vault
against the vault predicted using random forest, gradi-
ent boosting, and linear regression. In addition, the

feature importance of the random forest and gradi-
ent boosting was provided by Orange. In the random
forest, the top five factors were ICL size, ACD, anterior
chamber volume from the Pentacam, SE, and anterior
chamber angle from the Pentacam. In gradient boost-
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Figure 7. ROC curve results predicting postoperative high vault (>750 μm) and low vault (<250 μm) levels. (A) High vault prediction in
the internal validation result through 10-fold cross-validation. (B) High vault prediction in the external validation result using Kim’s Eye
Hospital data. (C) Low vault prediction in the internal validation result through 10-fold cross-validation. (D) Low vault prediction in the
external validation result using Kim’s Eye Hospital data.

ing, the top five factors were ICL size, ACD, corneal
back eccentricity from the Pentacam, SE values are not
from Pentacam, and corneal volume from the Penta-
cam. Figure 6 shows the distribution of postopera-
tive vault errors in the developed random forest model.
In the internal validation, 6.1% showed the error with
<−250 μm, and 5.1% showed the error with >+250
μm. In the external validation, 9.6% showed the error
with <−250 μm, and 3.8% showed the error with
>+250 μm.

In addition, we successfully learned binary
classification models without coding using Orange
software. Figure 7 shows ROC curve results predicting
postoperative high vault (>750 μm) and low vault
(<250 μm) values. Gradient boosting showed the
highest performance in predicting a high vault and
had AUCs of 0.735 and 0.790 for the internal 10-
fold cross-validation and external validation datasets,
respectively. The random forest showed the second-best
performance, with AUCs of 0.725 and 0.760 for the
internal 10-fold cross-validation and external valida-
tion datasets, respectively. In predicting low vaults,
random forest showed the highest performance, with
AUCs of 0.799 for the internal 10-fold cross-validation
and 0.891 for the external validation datasets. Random

forest performed better than logistic regression in both
the high- and low-vault prediction tasks.

Figure 8 shows the results of direct ICL size predic-
tion using the developed vault prediction models. The
confusion matrices showed that the random forest
model achieved accuracies of 79.2% and 82.1% for the
internal and external validation sets, respectively. The
gradient boosting model exhibited accuracies of 82.2%
and 75.0% for the internal and external validation sets,
respectively. These methods performed better than the
linear regression model.

Discussion

We developed a robust predictive AI model for ICL
surgery using local surgical data and an open-source
code-development tool. Learning coding syntax has
been a barrier for manymedical researchers in develop-
ing machine learning models using surgical data from
their clinics. Many cloud platform–based services are
limited by an unintuitive interface design that requires
a fee. Orange has overcome these shortcomings and
provides researchers with an easy-to-learn and free
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Figure 8. Confusion matrices of the ICL size selection based on the developed vault prediction models to show classification accuracy
among the cases with good outcomes (250 μm ≤ achieved vault ≤ 750 μm) in the internal and external validation data. (A) Random forest.
(B) Gradient boosting. (C) Logistic regressionmodels in the internal validation result through 10-fold cross-validation. (D) Random forest. (E)
Gradient boosting. (F) Logistic regression models in the external validation result using Kim’s Eye Hospital data. The vault was predicted for
each ICL size, and the size with the predicted postoperative vault value closest to 500 μmwas selected as the model result. Cases where the
achieve vault was too large (>750 μm) or too small (<250 μm) were assumed to be cases where the wrong ICL size was selected and the
label was contaminated, and they were removed from this classification problem.

interface. It helps researchers without coding experi-
ence build fast and clear machine learning models and
provide validation results. To our knowledge, this is the
first study to develop and externally validate a predic-
tion model for the postoperative vault in ICL implan-
tation using Pentacam equipment.

In our study, we confirmed that the algorithms
developed using machine learning performed better
than linear regression analysis–based methods. Exist-
ing widely used methods, such as the CASIA2 KS
and NK formulas,18,19 are based on linear regres-
sion models. In individual studies,2,20 machine learn-
ing showed higher performance than these models, but
this may be the result of overfitting to individual insti-
tution data.7 By developing machine learning models
for each individual institution using no-code tools, it is
possible to develop an optimal lens sizing algorithm for
each individual institution without a significant devel-
opment burden.

To achieve accurate and safe ICL implantation,
it is important to develop a nomogram based on
operator-specific clinical data because the ICL size
nomogram provided by the manufacturer is inaccu-
rate (especially for East Asians),2 and there is no

standardized sizing method.7 Because there is signif-
icant bias in measurement data between devices,21,22
a nomogram must be developed individually for each
device to ensure accurate surgery. Additionally, because
measurements of the crystalline lens, iris, and anterior
chamber angle are significantly affected by lighting,23
the nomogram can vary depending on the measure-
ment protocol used at each center. Therefore, although
many nomograms for ICL sizing have been developed,
limitations in their performance are well known.24 As
the number of variables used as input to the nomogram
model increases, the accuracy of the development data
improves, but the robustness of the model decreases
and accuracy in external sets cannot be guaranteed.25
If a customized nomogram is developed based on
machine learning tailored to the biometry measure-
ment environment and racial characteristics of the
patients for each center, a more accurate surgery will be
possible. The customized machine learning model can
further increase the accuracy of phakic IOL surgery by
providing vault values for each IOL size to surgeons at
each institution (Supplementary Fig. S1).

The Pentacam is a non-invasive Scheimpflug
imaging system that is commonly used in ophthal-
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mology clinics to measure the anterior segment of
the eye.26 It can measure the corneal topography,
iris, anterior chamber angle, and front part of the
crystalline lens. AS-OCT and the Pentacam have been
reported to have comparable performance in measur-
ing the anterior segment.27 However, they have so far
been neglected in developingmodels for ICL surgery. If
our machine learning model, which is based on Penta-
cam measurements, can be applied in clinics, it will
be possible to accurately perform ICL implantation
without expensive AS-OCT equipment.

The postoperative vault predictionmodel developed
in this study showed good performance compared with
previously published studies. Our random forest model
achievedMAEs of 124.8 μm and 152.4 μm in the inter-
nal and external validations, respectively, using Penta-
cam HR data without any coding experience. Previ-
ous studies that analyzed AS-OCT data using machine
learning algorithms have also shown similar results,
with MAE values between 100 and 150 μm in inter-
nal validation and decreased performance in external
validation.6,28 In these studies, the random forest or
similar tree-based algorithms were the best perform-
ing algorithms and were developed based on the Scikit-
learn library running on Python. In a previous study
using the Pentacam, an MAE of 149.0 was reported
for internal validation using an extra tree algorithm
developed using the PyCaret library running onPython
with a large GPU workstation. In terms of develop-
ment efficiency, Orange software surpasses the previ-
ously used console-based machine learning develop-
ment methods. Similar to Scikit-learn, the final trained
model from the Orange software can be exported and
used in the application.

In our study, there was little difference in perfor-
mance between the Google code-free model and the
machine learning model developed using the Orange
software. Furthermore, the model developed using
the Orange software was superior in the external
validation set. Orange provides visualization tools for
data flow and model development, allowing clini-
cians without development experience to easily train
and use machine learning–based ICL sizing models.
Compared with Google Cloud’s no-code machine
learning tool AutoML (currently renamed Vertex
AI), Orange software offers many advantages. In
Orange, researchers can experiment by tuning various
models and data explorations using flow-based tools.14
Because AutoML performs many optimizations inter-
nally, it is difficult to check the hyperparameters of the
resulting model. Additionally, AutoML operates in a
cloud environment, which makes it less accessible to
researchers.

This study had several limitations. First, model
development and validation were conducted through

retrospective data collection. Therefore, the developed
model should be tested prospectively to confirm its
clinical applicability. Second, this study was trained
on East Asian population data, so the applicability of
the model is limited to other regional races.29 Particu-
larly, in the case of phakic IOL implantation, the IOL
size distribution between Asians and Westerners has
been reported to be significantly different, and biomet-
ric information by race is also significantly different.
Third, the amount of data used in this study was
relatively small for the development of the machine
learningmodels. Because the number of input variables
in the analysis data is large, small amounts of data can
cause overfitting, andmore data are required to create a
more generalized regression model. High-performance
machine learning models can be developed by collect-
ing additional data from ICL surgeries. Fourth, the
model was developed based on Pentacam data and was
not compared with data obtained from the KS and
NK formulas. Because the KS and NK formulas are
based on the CASIA2 or UBM,18,30 objective compar-
ison was not possible with the current study design.
The institution that performed the external validation
of this study did not perform preoperative AS-OCT;
therefore, it was difficult to confirm the superiority of
the developedmachine learning algorithm over existing
methods.

Conclusions

Applying an open-source no-code machine learning
tool to one’s own clinical dataset of ICL implanta-
tion yielded a more accurate prediction of postop-
erative vault levels than classical regression models
and Google’s code-free machine learning tool.
Because there is significant bias in measurement
data and surgery among clinics, the development of a
customized machine learning–based nomogram will
improve the accuracy of ICL implantation. Machine
learning methods that can be developed without
coding enable researchers to easily develop and apply
individual nomograms. After extensive validation of
this framework, customized data-driven models can
help clinicians and patients predict and improve the
results of ICL implantation.
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